
stoQ Documentation
Release v3.0.1

Marcus LaFerrera

Jan 06, 2022

CONTENTS

1 Overview 3
1.1 History . 3
1.2 Why use stoQ? . 3
1.3 Philosophy . 4
1.4 Architecture . 4
1.5 Example Output . 4
1.6 Guides . 10

1.6.1 User and Development Guide . 10
1.6.2 Community Guide . 50

2 Indices and tables 55

Python Module Index 57

Index 59

i

ii

stoQ Documentation, Release v3.0.1

Release v3.0.1

CONTENTS 1

https://pypi.org/project/stoq-framework/
https://pypi.org/project/stoq-framework/
https://api.travis-ci.org/PUNCH-Cyber/stoq.svg?branch=master
https://coveralls.io/github/PUNCH-Cyber/stoq?branch=master

stoQ Documentation, Release v3.0.1

2 CONTENTS

CHAPTER

ONE

OVERVIEW

stoQ is an automation framework that helps to simplify the mundane and repetitive tasks an analyst is
required to do. It enables analysts and DevSecOps teams to quickly transition between different data
sources, databases, decoders/encoders, and numerous other tasks using enriched and consistent data
structures. stoQ was designed to be enterprise ready and scalable, while also being lean enough for
individual security researchers.

1.1 History

stoQ was initially a collection of scripts that helped us solve problems we encountered daily. These tasks, such as
parsing an SMTP session, extracting attachments, scanning them with a multitude of custom and open source tools,
saving the results, and then finally analyzing them took up an increasing amount of our team’s resources. We spent an
ever increasing amount of time simply attempting to collect and extract data. This took valuable resources away from
our ability to actually find and analyze adversaries targeting our networks.

We grew tired of being the hamster in a wheel and decided to do something about it. In 2011, we began development
of a framework that would not only tackle the problem above, but also allow us to quickly change the flow of data
and automated analytics, quickly pivot to new databases to house the results, and simply be able to respond to the
adversaries changing their tactics, techniques, and procedures (TTPs).

Most importantly, our focus was to build a tool that would allow us to do what we love to do – defend networks from
adversaries that are determined, focused, and relentless.

In 2015, after stoQ had been matured in multiple large scale operational networks, we decided to open source our
work in hopes of helping the wider Network Defense community. Since then, we’ve been constantly enhancing stoQ
thanks to the feedback and contributions from the community of stoQ users.

1.2 Why use stoQ?

Over the years, there have been several other open source solutions that have been released that have similar capabilities
to stoQ. However, stoQ is fundamentally different in many ways when compared to other solutions available. Some
key differences are:

• Extremely lightweight and designed with simplicity in mind.

• Fully supports AsyncIO

• A wide range of publicly available plugins.

• stoQ makes no assumptions about your workflow. Analysts decide everything, from where data originates, how
it is scanned/decoded/processed, to where it is saved.

3

https://github.com/PUNCH-Cyber/stoq-plugins-public

stoQ Documentation, Release v3.0.1

• Scalable in not only native/bare metal environments, but also using solutions such as Kubernetes, AWS Lambda,
Google Cloud Functions, Azure Functions, and many more.

• Written to be easily and quickly extended. All you need is a plugin.

• Can be used in an enterprise environment or by individuals without the need for client/server infrastructure

• Over 95% of code is covered by unittests.

• All core functions and plugins leverage typing and are type-checked at commit.

• Actively developed since 2011, open source since 2015.

• Extensive up-to-date documentation.

1.3 Philosophy

Our goal with stoQ has always been to simplify the mundane and automate the repetitive, ultimately enabling network
defenders to do what they do best – focus on the threats. Since we began development, this philosophy has not shifted.
Our core philosophy for both design and development can be best summarized by the Zen of Python:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Readability counts.

1.4 Architecture

One of the most powerful features in stoQ is its flexibility. Because stoQ is a framework, the majority of the work
actually happens within the plugins. stoQ itself is meant to orchestrate the communication between the various plugins
and normalize their results. stoQ makes no assumptions on the architecture that works best for the user. Because of
this, stoQ allows for a highly configurable and flexible architecture that can be defined by the user.

For example, analysts can run stoQ against an individual file on their local computer, or against 100’s of millions of
payloads that are extracted off the wire – and everything in between. Payloads can be dynamically routed to plugins
using yara, TRiD, and even static attributes. Results can be saved with ElasticSearch one day, then in Splunk the next,
or both at the same time. Directories can be monitored for new files, queueing solutions such as RabbitMQ or Google
PubSub can be leveraged, or mailboxes can even be monitored for new e-mails. No matter what an analyst wants to
do with stoQ, it’s simply a matter of writing a plugin.

1.5 Example Output

As an example of output from stoQ, let’s scan a local file with ExifTool and get the hashes of the payload:

{
"time": "...",
"results": [

{
"payload_id": "00d2f069-d716-43ed-bc2f-b0bd295574d4",
"size": 507904,

(continues on next page)

4 Chapter 1. Overview

https://stoq-framework.readthedocs.io
https://www.python.org/dev/peps/pep-0020/

stoQ Documentation, Release v3.0.1

(continued from previous page)

"payload_meta": {
"should_archive": true,
"extra_data": {

"filename": "bad.exe"
},
"dispatch_to": []

},
"workers": {

"hash": {
"sha256":

→˓"47c6e9b102324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
"md5": "16d9f6e5491d99beb46d7ab1500c1799",
"sha1": "9e6414bf2802c98fbd13172817db80380c5eeb6a"

},
"exif": {

"SourceFile": "/tmp/tmp3r4juo8e",
"ExifToolVersion": 11.11,
"FileName": "tmp3r4juo8e",
"Directory": "/tmp",
"FileSize": 507904,
"FileModifyDate": "...",
"FileAccessDate": "...",
"FileInodeChangeDate": ".",
"FilePermissions": 600,
"FileType": "Win32 EXE",
"FileTypeExtension": "EXE",
"MIMEType": "application/octet-stream",
"MachineType": 332,
"TimeStamp": "2013:04:20 10:50:10-04:00",
"ImageFileCharacteristics": 258,
"PEType": 267,
"LinkerVersion": 9.0,
"CodeSize": 386048,
"InitializedDataSize": 120832,
"UninitializedDataSize": 0,
"EntryPoint": 208320,
"OSVersion": 5.0,
"ImageVersion": 0.0,
"SubsystemVersion": 5.0,
"Subsystem": 2

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"exif",
"hash"

]
],
"archivers": []

},
"extracted_from": null,
"extracted_by": null

}
],
"request_meta": {

(continues on next page)

1.5. Example Output 5

stoQ Documentation, Release v3.0.1

(continued from previous page)

"archive_payloads": true,
"source": null,
"extra_data": {}

},
"errors": {},
"decorators": {},
"scan_id": "4d053d5e-9f4e-417b-8f0e-deea0d45449d"

}

Or, carve a few executable files out of a Microsoft Word document:

{
"time": "...",
"results": [

{
"payload_id": "e777051a-832b-489f-b74c-9949b2c9a2ce",
"size": 558592,
"payload_meta": {

"should_archive": true,
"extra_data": {

"filename": "sample_doc_with_pe.doc"
},
"dispatch_to": []

},
"workers": {

"exif": {
"SourceFile": "/tmp/tmpbqtisxjd",
"ExifToolVersion": 11.11,
"FileName": "tmpbqtisxjd",
"Directory": "/tmp",
"FileSize": 558592,
"FileModifyDate": "...",
"FileAccessDate": "...",
"FileInodeChangeDate": "...",
"FilePermissions": 600,
"FileType": "DOC",
"FileTypeExtension": "DOC",
"MIMEType": "application/msword",
"Identification": 42476,
"LanguageCode": 1033,
"DocFlags": 4616,
"System": 0,
"Word97": 0,
"Author": "xxxxxxxxxxxx",
"Template": "Normal",
"LastModifiedBy": "xxxxxxxxxxxx",
"Software": "Microsoft Office Word",
"CreateDate": "2017:11:13 21:27:00",
"ModifyDate": "2017:11:13 21:28:00",
"Security": 0,
"CodePage": 1252,
"Company": "",
"CharCountWithSpaces": 20,
"AppVersion": 14.0,
"ScaleCrop": 0,
"LinksUpToDate": 0,
"SharedDoc": 0,

(continues on next page)

6 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

"HyperlinksChanged": 0,
"TitleOfParts": "",
"HeadingPairs": [

"Título",
1

],
"CompObjUserTypeLen": 36,
"CompObjUserType": "Documento do Microsoft Word 97-2003",
"LastPrinted": "0000:00:00 00:00:00",
"RevisionNumber": 2,
"TotalEditTime": 1,
"Words": 3,
"Characters": 18,
"Pages": 1,
"Paragraphs": 1,
"Lines": 1

},
"hash": {

"sha256":
→˓"4e3a682b2187f7c722b88af9bff5292fd7beb4d77233d1b3bc46f0bfc4891068",

"md5": "137720063880f80270a61181b021d000",
"sha1": "08bc0a52ee27ad0ceaa87bf394b1faa7a43bf27e"

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"pecarve",
"exif",
"hash"

]
],
"archivers": []

},
"extracted_from": null,
"extracted_by": null

},
{

"payload_id": "471b49f3-ea99-481f-a0a3-502826e69c73",
"size": 31232,
"payload_meta": {

"should_archive": true,
"extra_data": {

"offset": 11367
},
"dispatch_to": []

},
"workers": {

"exif": {
"SourceFile": "/tmp/tmpyi0yx_wf",
"ExifToolVersion": 11.11,
"FileName": "tmpyi0yx_wf",
"Directory": "/tmp",
"FileSize": 31232,
"FileModifyDate": "...",
"FileAccessDate": "...",

(continues on next page)

1.5. Example Output 7

stoQ Documentation, Release v3.0.1

(continued from previous page)

"FileInodeChangeDate": "...",
"FilePermissions": 600,
"FileType": "Win32 EXE",
"FileTypeExtension": "EXE",
"MIMEType": "application/octet-stream",
"MachineType": 332,
"TimeStamp": "2016:07:15 21:44:45-04:00",
"ImageFileCharacteristics": 258,
"PEType": 267,
"LinkerVersion": 14.0,
"CodeSize": 8192,
"InitializedDataSize": 22528,
"UninitializedDataSize": 0,
"EntryPoint": 10496,
"OSVersion": 10.0,
"ImageVersion": 10.0,
"SubsystemVersion": 10.0,
"Subsystem": 2,
"FileVersionNumber": "10.0.14393.0",
"ProductVersionNumber": "10.0.14393.0",
"FileFlagsMask": 63,
"FileFlags": 0,
"FileOS": 262148,
"ObjectFileType": 1,
"FileSubtype": 0,
"LanguageCode": "0409",
"CharacterSet": "04B0",
"CompanyName": "Microsoft Corporation",
"FileDescription": "Windows Calculator",
"FileVersion": "10.0.14393.0 (rs1_release.160715-1616)",
"InternalName": "CALC",
"LegalCopyright": "© Microsoft Corporation. All rights reserved.",
"OriginalFileName": "CALC.EXE",
"ProductName": "Microsoft® Windows® Operating System",
"ProductVersion": "10.0.14393.0",
"Warning": "Possibly corrupt Version resource"

},
"hash": {

"sha256":
→˓"c74f41325775de4777000161a057342cc57a04e8b7be17b06576412eff574dc5",

"md5": "40e85286357723f326980a3b30f84e4f",
"sha1": "2e391131f9b77a8ec0e0172113692f9e2ccceaf0"

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"exif",
"hash"

]
],
"archivers": []

},
"extracted_from": "e777051a-832b-489f-b74c-9949b2c9a2ce",
"extracted_by": "pecarve"

},
(continues on next page)

8 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

{
"payload_id": "5a6279a4-df1d-4575-8587-286f5938839d",
"size": 507904,
"payload_meta": {

"should_archive": true,
"extra_data": {

"offset": 50688
},
"dispatch_to": []

},
"workers": {

"exif": {
"SourceFile": "/tmp/tmpsiaa54tm",
"ExifToolVersion": 11.11,
"FileName": "tmpsiaa54tm",
"Directory": "/tmp",
"FileSize": 507904,
"FileModifyDate": "...",
"FileAccessDate": "...",
"FileInodeChangeDate": "...",
"FilePermissions": 600,
"FileType": "Win32 EXE",
"FileTypeExtension": "EXE",
"MIMEType": "application/octet-stream",
"MachineType": 332,
"TimeStamp": "2013:04:20 10:50:10-04:00",
"ImageFileCharacteristics": 258,
"PEType": 267,
"LinkerVersion": 9.0,
"CodeSize": 386048,
"InitializedDataSize": 120832,
"UninitializedDataSize": 0,
"EntryPoint": 208320,
"OSVersion": 5.0,
"ImageVersion": 0.0,
"SubsystemVersion": 5.0,
"Subsystem": 2

},
"hash": {

"sha256":
→˓"47c6e9b102324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",

"md5": "16d9f6e5491d99beb46d7ab1500c1799",
"sha1": "9e6414bf2802c98fbd13172817db80380c5eeb6a"

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"exif",
"hash"

]
],
"archivers": []

},
"extracted_from": "e777051a-832b-489f-b74c-9949b2c9a2ce",
"extracted_by": "pecarve"

(continues on next page)

1.5. Example Output 9

stoQ Documentation, Release v3.0.1

(continued from previous page)

}
],
"request_meta": {

"archive_payloads": true,
"source": null,
"extra_data": {}

},
"errors": {},
"decorators": {},
"scan_id": "04f9aec3-afc7-4fa1-b179-73e46c074e81"

}

1.6 Guides

1.6.1 User and Development Guide

Want to get started using stoQ or write your own plugins? Start reading here.

Installation

stoQ is extremely lightweight and strives for minimal dependencies. It can be installed either via pip or directly from
source. Once you have stoQ installed, it’s just a matter of installing the required plugins for your use case. stoQ has
over 40 publicly available plugins that can be found in their own repository here.

Minimum requirements

stoQ requires a minimum of python 3.6 and is recommended to be run in a python venv.

Initial Setup

Setup a $STOQ_HOME (defaults to ~/.stoq) folder, the necessary plugin folder and a virtual environment:

$ mkdir -p ~/.stoq/plugins
$ python3 -m venv ~/.stoq/.venv
$ source ~/.stoq/.venv/bin/activate

Stable

The simplest way to get started is to install stoQ from pip:

$ pip3 install stoq-framework

10 Chapter 1. Overview

https://github.com/PUNCH-Cyber/stoq-plugins-public
https://docs.python.org/3/library/venv.html

stoQ Documentation, Release v3.0.1

Development

If you would rather use the latest development version, you can simply clone the repository and install from there:

$ git clone https://github.com/PUNCH-Cyber/stoq

Then, simply open the stoq directory and install:

$ cd stoq
$ python3 setup.py install

Note: Depending on your environment, you may also need to run pip3 install wheel to successfully install stoQ

Installing Plugins

There are two ways of installing stoQ plugins. All core public plugins can be installed via the command line directly
from GitHub. Additionally, plugins can be installed from a local directory.

From GitHub

Once you have stoQ installed, you can start installing the publicly available plugins. For a full listing of plugins and a
description of their functionality, you can visit the stoQ public plugins repository here.

In order to install plugins from the stoQ plugin repository, you can use the stoq command:

$ stoq install --github stoq:PLUGIN_NAME

For this example, let’s just install the yara and stdout plugins. First, let’s install the yara plugin:

$ stoq install --github stoq:yara
Successfully installed to ~/.stoq/plugins/yara

Now, let’s install the stdout plugin:

$ stoq install --github stoq:stdout
Successfully installed to ~/.stoq/plugins/stdout

From directory

Plugins can also be installed from a local directory. This is useful if you have custom or third party plugins. Addition-
ally, plugins can be installed from a cloned version of stoQ’s public plugin repository:

$ stoq install path/to/plugin

1.6. Guides 11

https://github.com/PUNCH-Cyber/stoq-plugins-public
https://github.com/PUNCH-Cyber/stoq-plugins-public

stoQ Documentation, Release v3.0.1

Upgrading plugins

Plugins may be upgraded (or downgraded) by adding the –upgrade command line option to the install command:

$ stoq install --upgrade --github stoq:stdout

Warning: Upgrading plugins is a destructive operation. This will overwrite/remove all data within the plugins
directory, to include the plugin configuration file. It is highly recommended that the plugin directory be backed up
regularly to ensure important information is not lost, or plugin configuration options be defined in stoq.cfg.

Getting Started

Now that stoQ is installed, getting up and running is extremely simple. stoQ can be run a few different ways, depending
on what your requirements are.

Configuring stoQ

stoq.cfg

stoQ’s configuration file is not required, but does offer the convenience of overriding the default configuration. An
example configuration file can be found here. By default, stoQ will look for stoq.cfg in $STOQ_HOME if running
from the command line, or $CWD if being used as a library.

Plugin options may also be defined in stoq.cfg. More information on how to configure plugins in stoq.cfg can
be found in plugin configuration.

$STOQ_HOME

When using the stoq command, stoQ will default to using $HOME/.stoq as it’s home directory. This path is
important as it is used as the default path for plugins and configuration files. You can easily override this by setting
the $STOQ_HOME environment variable. For example, we can set stoQ’s home directory to /opt/stoq like so:

$ export $STOQ_HOME=/opt/stoq

Now, stoQ will look for plugins in /opt/stoq/plugins and the stoq.cfg configuration file in /opt/stoq/
stoq.cfg.

One thing to note is, $STOQ_HOME is only valid when using the stoq command. If you are using stoQ as a library,
the default path will be $CWD.

12 Chapter 1. Overview

https://github.com/PUNCH-Cyber/stoq/blob/master/extras/stoq.cfg

stoQ Documentation, Release v3.0.1

Running stoQ

The easiest way to get started is by running stoQ from the command line. There are two modes available, scan and
run. Before we get into what each more is used for, let’s see how installed plugins can be listed.

List Plugins

Installed plugins can be easily listed by using the stoq command:

$ stoq list
stoQ :: v3.x.x :: an automated analysis framework

xdpcarve v3.0.0 Carve and decode streams from XDP documents
stdout v3.0.0 Sends content to STDOUT
rtf v3.0.0 Extract objects from RTF payloads
hash v3.0.0 Hash content
dirmon v3.0.0 Monitor a directory for newly created files
→˓for processing
vtmis-search v3.0.0 Search VTMIS API
peinfo v3.0.0 Gather relevant information about an
→˓executable using pefile
javaclass v3.0.0 Decodes and extracts information from Java
→˓Class files
filedir v3.0.0 Ingest a file or directory for processing
yara v3.0.0 Process a payload using yara
decompress v3.0.0 Extract content from a multitude of archive
→˓formats
ole v3.0.0 Carve OLE streams within Microsoft Office
→˓Documents
iocextract v3.0.0 Regex routines to extract and normalize IOC
→˓'s from a payload
mraptor v3.0.0 Port of mraptor3 from oletools
trid v3.0.0 Identify file types from their TrID signature
smtp v3.0.0 SMTP Parser Worker
exif v3.0.0 Processes a payload using ExifTool
pecarve v3.0.0 Carve portable executable files from a data
→˓stream
swfcarve v3.0.0 Carve and decompress SWF files from a data
→˓stream

Scan Mode

Scan mode is designed for scanning an individual payload from the command line. This is especially useful for
lightweight tasks or one-off scans.

Let’s get started. In this example, let’s simply generate the MD5, SHA1, and SHA256 hashes of a file.

First, let’s make sure we have the required plugins installed:

$ stoq install --github stoq:hash

Now, let’s run stoq with the hash plugin:

$ stoq scan /tmp/bad.exe -s hash
{

(continues on next page)

1.6. Guides 13

stoQ Documentation, Release v3.0.1

(continued from previous page)

"time": "...",
"results": [

{
"payload_id": "0acfdfcf-f298-4950-96d2-13e3f93646b5",
"size": 507904,
"payload_meta": {

"should_archive": true,
"extra_data": {

"filename": "bad.exe"
},
"dispatch_to": []

},
"workers": {

"hash": {
"sha256":

→˓"47c6e9b402324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
"md5": "16d9f6e5421d99beb46d7ab1500c1799",
"sha1": "9e6414bf28a2c98fbd13172817db80380c5eeb6a"

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"hash"
]

],
"archivers": []

},
"extracted_from": null,
"extracted_by": null

}
],
"request_meta": {

"archive_payloads": true,
"source": null,
"extra_data": {}

},
"errors": {},
"decorators": {},
"scan_id": "5699d5ac-df3b-4ba1-bb38-296813d14d19"

}

Great, now we’ve generated the needed hashes; but stoQ allows us to do way more than just generate hashes. Let’s
also tell stoQ to use the peinfo plugin. First, let’s make sure the plugin is installed:

$ stoq install --github stoq:peinfo

Ok, now let’s scan the payload again, but this time we will use both plugins:

$ stoq scan /tmp/bad.exe -s hash peinfo
{

"time": "...",
"results": [

{
"payload_id": "38cb070d-c9e8-48be-84d9-6ee612489fe8",

(continues on next page)

14 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

"size": 507904,
"payload_meta": {

"should_archive": true,
"extra_data": {

"filename": "bad.exe"
},
"dispatch_to": []

},
"workers": {

"hash": {
"sha256":

→˓"47c6e9b402324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
"md5": "16d9f6e5421d99beb46d7ab1500c1799",
"sha1": "9e6414bf28a2c98fbd13172817db80380c5eeb6a"
}

"peinfo": {
"imphash": "6238d5d3f08e2b63c437c2ba9e1f7151",
"compile_time": "2013-04-20 10:50:10",
"packer": null,
"is_packed": false,
"is_exe": true,
"is_dll": false,
"is_driver": false,
"is_valid": null,
"is_suspicious": null,
"machine_type": "IMAGE_FILE_MACHINE_I386",
"entrypoint": "0x32dc0",
"section_count": 5,
[...TRUNCATED...]

}
}
"archivers": {},
"plugins_run": {

"workers": [
[

"hash",
"peinfo"

]
],
"archivers": []

},
"extracted_from": null,
"extracted_by": null

}
],
"request_meta": {

"archive_payloads": true,
"source": null,
"extra_data": {}

},
"errors": {},
"decorators": {},
"scan_id": "43f3210b-b4ce-41e5-b39a-5fb8dbbc45ac"

}

Now, you’ve run the payload with two different plugins simply by adding it to your command line. As you use stoQ,
you will see the power this affords you. This is especially true when you start delving into some of the more advanced

1.6. Guides 15

stoQ Documentation, Release v3.0.1

use cases. There are quite a few other command line options, we’ve only just scratched the surface. For more command
line options available in scan mode, just run:

$ stoq scan -h

Run Mode

Run mode is similar to scan mode, but is meant for handling multiple payloads or for long running tasks. This mode
requires the use of a provider plugin.

For this example, we will monitor a directory for new files. When new files are created, the plugin will detect this and
send the payload to stoQ for scanning. Chances are we won’t want the results to simply be displayed to the console,
so we will also save the results to disk.

First, let’s make sure the required plugins are installed. Let’s start with the dirmon plugin. This plugin monitors a
directory for newly created files:

$ stoq install --github stoq:dirmon

Now, time to install the filedir plugin. This plugin will save the results to disk:

$ stoq install --github stoq:filedir

We’ll monitor the directory /tmp/monitor for this example and save our results to /tmp/results. Let’s create
these directories:

$ mkdir /tmp/monitor /tmp/results

Since we already have the hash and peinfo plugins installed from the scan mode example above, let’s use them for
scanning the payloads.:

$ stoq run -P dirmon -C filedir -a hash peinfo \
--plugin-opts dirmon:source_dir=/tmp/monitor \
filedir:results_dir=/tmp/results

Now, let’s copy bad.exe into the monitor directory:

$ cp /tmp/bad.exe /tmp/monitor

Ok, stoQ should have detected bad.exe was created in /tmp/monitor and then scan the content with the hash
and peinfo plugins, then save the results to /tmp/results. Let’s take a look:

$ ls /tmp/results/
1f168f68-1c19-46f9-9427-585345a6fe24

Great! We have successfully monitored a directory for new files, scanned them with two plugins, and then saved the
results to disk. Again, we’ve only scratched the surface as to what stoQ can do. For more command line options in
run mode, simply run:

$ stoq run -h

16 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Plugin configuration

Plugin configurations may be defined in several ways, see plugin configuration.

RequestMeta Options

RequestMeta options sets metadata associated with the initial request stoQ receives. This is useful when certain
metadata, such as the source name of the payload, must be saved alongside the results of the scan.

There are two command line options avaiable for RequestMeta.

• --request-source

• --request-extra

To set --request-source simply add the argument to the stoq command:

$ stoq scan [...] --request-source my_mail
{

"results": {
{

[...]
"payload_id": "27774a9a-5a03-4d59-b51b-37583683b666",
[...]

}
}
"request_meta": {

"archive_payloads": true,
"source": "my_mail",
"extra_data": {}

},
"errors": {},
"time": "...",
"decorators": {},
"scan_id": "e107f362-0b40-455e-bfef-da7c606637ca"

}

Additionally, extra data may be added to RequestMeta by using the --request-extra command line argument.
This option requires key/value pairs separated by an =:

$ stoq scan [...] --request-source my_mail --request-extra server=mail-server-01
→˓postfix=true
{

"results": {
{

[...]
"payload_id": "27774a9a-5a03-4d59-b51b-37583683b666",
[...]

}
}
"request_meta": {

"archive_payloads": true,
"source": "my_mail",
"extra_data": {

"server": "mail-server-01",
"postfix": true

}

(continues on next page)

1.6. Guides 17

stoQ Documentation, Release v3.0.1

(continued from previous page)

},
"errors": {},
"time": "...",
"decorators": {},
"scan_id": "e107f362-0b40-455e-bfef-da7c606637ca"

}

Additionally, RequestMeta may be defined when scanning a payload using a Stoq object:

>>> import asyncio
>>> from stoq import Stoq, RequestMeta
>>> s = Stoq()
>>> loop = asyncio.get_event_loop()
>>> request_meta = RequestMeta(source='my_mail', extra_data={'server': 'mail-server-01
→˓', 'postfix': True})
>>> results = loop.run_until_complete(
... s.scan(b'this is a test payload', request_meta=request_meta)
...)

Development

Core

Overview

stoQ is an extremely flexible framework. In this section we will go over some of the most advanced uses and show
examples of how it can be used as a framework.

Framework

stoQ is much more than simply a command to be run. First and foremost, stoQ is a framework. The command stoq
is simply a means of interacting with the framework. For more detailed and robust information on APIs available for
stoQ, please check out the plugin documentation.

Stoq is the primary class for interacting with stoQ and its plugins. All arguments, except for plugins to be used,
must be defined upon instantiation. Plugins can be loaded at any time. However, to ensure consistent behavior, it is
recommended that all required plugins be loaded upon instantiation.

For these examples, it is assumed the below plugins have been installed in $CWD/plugins:

• dirmon

• exif

• filedir

• hash

• yara

18 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Individual Scan

Individual scans are useful for scanning single payloads at a time. The user is responsible for ensuring a payload is
passed to the Stoq class.

Note: Provider plugins are ignored when conducting an individual scan.

1. First, import the required class:

>>> import asyncio
>>> from stoq import Stoq, RequestMeta

2. We will now define the plugins we want to use. In this case, we will be loading the hash, and exif plugins:

>>> workers = ['hash', 'exif']

3. Now that we have our environment defined, lets instantiate the Stoq class:

>>> s = Stoq(always_dispatch=workers)

4. We can now load a payload, and scan it individually with stoQ:

>>> src = '/tmp/bad.exe'
>>> loop = asyncio.get_event_loop()
>>> with open(src, 'rb') as src_payload:
... meta = RequestMeta(extra_data={'filename': src})
... results = loop.run_until_complete(s.scan(
... content=src_payload.read(),
... request_meta=meta))
>>> print(results)
... {
... "time": "...",
... "results": [
... {
... "payload_id": "...",
... "size": 507904,
... "payload_meta": {
... "should_archive": true,
... "extra_data": {
... "filename": "/tmp/bad.exe"
... },
... "dispatch_to": []
... },
... "workers": {
... "hash": {
... [...]

1.6. Guides 19

stoQ Documentation, Release v3.0.1

Using Providers

Using stoQ with providers allows for the scanning of multiple payloads from multiple sources. This method will
instantiate a Queue which payloads or requests are published to for scanning by stoQ. Additionally, payloads may be
retrieved from multiple disparate data sources using Archiver plugins.

1. First, import the required class:

>>> import asyncio
>>> from stoq import Stoq

2. We will now define the plugins we want to use. In this case, we will be loading the dirmon, filedir, hash,
and exif plugins. We will also set the base_dir to a specific directory. Additionally, we will also set some
plugin options to ensure the plugins are operating the way we’d like them:

>>> always_dispatch = ['hash']
>>> providers = ['dirmon']
>>> connectors = ['filedir']
>>> dispatchers = ['yara']
>>> plugin_opts = {
... 'dirmon': {'source_dir': '/tmp/datadump'},
... 'filedir': {'results_dir': '/tmp/stoq-results'}
... }
>>> base_dir = '/usr/local/stoq'
>>> plugin_dirs = ['/opt/plugins']

Note: Any plugin options available in the plugin’s .stoq configuration file can be set via the plugin_opts
argument.

3. Now that we have our environment defined, lets instantiate the Stoq class, and run:

>>> s = Stoq(
... base_dir=base_dir,
... plugin_dir_list=plugin_dirs,
... dispatchers=dispatchers,
... providers=providers,
... connectors=connectors,
... plugins_opts=plugins_opts,
... always_dispatch=always_dispatch
...)
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(s.run())

A few things are happening here:

1. The /tmp/datadump directory is being monitored for newly created files

2. Each file is opened, and the payload is loaded into Stoq asynchronously

3. The payload is scanned with the yara dispatcher plugin

4. The yara dispatcher plugin returns a list of plugins that the payload should be scanned with

5. The plugins identified by the yara dispatcher are loaded, and the payload is sent to them

6. Each payload will always be sent to the hash plugin because it was defined in always_dispatch

7. The results from all plugins are collected, and sent to the filedir connector plugin

20 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

8. The filedir plugin saves each result to disk in /tmp/stoq-results

Manual Interaction

Stoq may also be interacted with manually, rather than relying on the normal workflow. In this section, we will touch
on how this can be done.

Instantiating stoQ

Let’s start by simply instantiating Stoq with no options. There are several arguments available when instantiating
Stoq, please refer to the plugin documentation for more information and options available.:

>>> from stoq import Stoq
>>> s = Stoq()

Loading plugins

stoQ plugins can be loaded using a simple helper function. The framework will automatically detect the type of plugin
is it based on the class of the plugin. There is no need to define the plugin type, stoQ will handle that once it is
loaded.:

>>> plugin = s.load_plugin('yara')

Instantiate Payload Object

In order to scan a payload, a Payload object must first be instantiated. The Payload object houses all information
related to a payload, to include the content of the payload and metadata (i.e., size, originating plugin information,
dispatch metadata, among others) pertaining to the payload. Optionally, a Payload object can be instantiated with a
PayloadMeta object to ensure the originating metadata (i.e., filename, source path, etc. . .) is also made available:

>>> import os
>>> import asyncio
>>> from stoq.data_classes import PayloadMeta, Payload
>>> filename = '/tmp/test_file.exe'
>>> with open(filename, 'rb') as src:
... meta = PayloadMeta(
... extra_data={
... 'filename': os.path.basename(filename),
... 'source_dir': os.path.dirname(filename),
... }
...)
>>> payload = Payload(src.read(), meta)

1.6. Guides 21

stoQ Documentation, Release v3.0.1

Scan payload

There are two helper functions available for scanning a payload. If a dispatcher plugin is not being used, then a worker
plugin must be defined by passing the add_start_dispatch argument. This tells stoQ to send the Payload
object to the specified worker plugins.

From raw bytes

If a Payload object has not been created yet, the content of the raw payload can simply be passed to the Stoq.scan
function. A Payload object will automatically be created.:

>>> loop = asyncio.get_event_loop()
>>> start_dispatch = ['yara']
>>> results = loop.run_until_complete(
... s.scan('raw bytes', add_start_dispatch=start_dispatch)
...)

From Payload object

If a Payload object has already been instantiated, as detailed above, the scan_request function may be called.
First, a new Request object must be instantiated with the Payload object that we previously created:

>>> import asyncio
>>> from stoq import Payload, Request, RequestMeta
>>> start_dispatch = ['yara']
>>> loop = asyncio.get_event_loop()
>>> payload = Payload(b'content to scan')
>>> request = Request(payloads=[payload], request_meta=RequestMeta())
>>> results = loop.run_until_complete(
... s.scan_request(request, add_start_dispatch=start_dispatch)
...)

Save Results

Finally, results may be saved using the desired Connector plugin. stoQ stores results from the framework as a
StoqResponse object. The results will be saved to all connector plugins that have been loaded. In this example, we
will only load the filedir plugin which will save the results to a specified directory.:

>>> connector = s.load_plugin('filedir')
>>> loop.run_until_complete(connector.save(results))

22 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Split Results

In some cases it may be required to split results out individually. For example, when saving results to different indexes
depending on plugin name, such as with ElasticSearch or Splunk.

>>> results = loop.run_until_complete(s.scan(payload))
>>> split_results = results.split()

Reconstructing Subresponse Results

stoQ can produce complex results depending on the recursion depth and extracted payload objects. In order to help
handle complex results and limit redundant processing of payloads when using stoQ as a framework, a method exists
that will allow for iterating over each result as if it were the original root object. This is especially useful when
handling compressed archives, such as zip or apk files that may have multiple levels of archived content. Additionally,
the defined decorators will be run against each newly constructed StoqResponse and added to the results.

>>> await for result in s.reconstruct_all_subresponses(results):
... print(result)

Below is a simple flow diagram of the iterated results when being reconstructed.

Multiple Plugin directories

When instantiating Stoq, multiple plugins directories may be defined. For more information on default paths, please
refer to the getting started documentation:

>>> from stoq import Stoq
>>> plugin_directories = ['/usr/local/stoq/plugins', '/home/.stoq/plugins']
>>> s = Stoq(plugin_dir_list=plugin_directories)

1.6. Guides 23

stoQ Documentation, Release v3.0.1

API

class stoq.core.Stoq(base_dir=None, config_file=None, log_dir=<object object>,
log_level=None, plugin_dir_list=None, plugin_opts=None, providers=None,
provider_consumers=None, source_archivers=None, dest_archivers=None,
connectors=None, dispatchers=None, decorators=None, al-
ways_dispatch=None, max_queue=None, max_recursion=None,
max_required_worker_depth=None)

Core Stoq Class

Parameters

• base_dir (Optional[str]) – Base directory for stoQ

• config_file (Optional[str]) – stoQ Configuration file

• log_dir (object) – Path to log directory

• log_level (Optional[str]) – Log level for logging events

• plugin_dir_list (Optional[List[str]]) – Paths to search for stoQ plugins

• plugin_opts (Optional[Dict[str, Dict]]) – Plugin specific options that are passed
once a plugin is loaded

• providers (Optional[List[str]]) – Provider plugins to be loaded and run for send-
ing payloads to scan

• source_archivers (Optional[List[str]]) – Archiver plugins to be used for load-
ing payloads for analysis

• dest_archiver – Archiver plugins to be used for archiving payloads and extracted pay-
loads

• connectors (Optional[List[str]]) – Connectors to be loaded and run for saving
results

• dispatchers (Optional[List[str]]) – Dispatcher plugins to be used

• decorators (Optional[List[str]]) – Decorators to be used

• always_dispatch (Optional[List[str]]) – Plugins to always send payloads to, no
matter what

• provider_consumers (Optional[int]) – Number of provider consumers to insta-
niate

• max_queue (Optional[int]) – Max Queue size for Providers plugins

• max_recursion (Optional[int]) – Maximum level of recursion into a payload and
extracted payloads

• max_required_worker_depth (Optional[int]) – Maximum depth for required
worker plugins dependencies

reconstruct_all_subresponses(stoq_response)
Generate a new StoqResponse object for each Payload within the Request

Return type AsyncGenerator[StoqResponse, None]

async run(request_meta=None, add_start_dispatch=None)
Run stoQ using a provider plugin to scan multiple files until exhaustion

Parameters

24 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

• request_meta (Optional[RequestMeta]) – Metadata pertaining to the originat-
ing request

• add_start_dispatch (Optional[List[str]]) – Force first round of scanning to
use specified plugins

Return type None

async scan(content, payload_meta=None, request_meta=None, add_start_dispatch=None, rate-
limit=None)

Wrapper for scan_request that creates a Payload object from bytes

Parameters

• content (bytes) – Raw bytes to be scanned

• payload_meta (Optional[PayloadMeta]) – Metadata pertaining to originating
source

• request_meta (Optional[RequestMeta]) – Metadata pertaining to the originat-
ing request

• add_start_dispatch (Optional[List[str]]) – Force first round of scanning to
use specified plugins

• ratelimit (Optional[str]) – Rate limit calls to scan

Return type StoqResponse

async scan_request(request, add_start_dispatch=None)
Scan an individual payload

Parameters

• request (Request) – Request object of payload(s) to be scanned

• add_start_dispatch (Optional[List[str]]) – Force first round of scanning to
use specified plugins

Return type StoqResponse

Exceptions

exception stoq.exceptions.StoqException

exception stoq.exceptions.StoqPluginNotFound

exception stoq.exceptions.StoqPluginException

Plugins

Overview

stoQ is a highly flexible framework because of its ability to leverage plugins for each layer of operations. One of the
biggest benefits to this approach is that it ensures the user is able to quickly and easily pivot to and from different
technologies in their stack, without having to drastically alter workflow.

For a full listing of all publicly available plugins, check out the stoQ public plugins repository.

1.6. Guides 25

https://github.com/PUNCH-Cyber/stoq-plugins-public

stoQ Documentation, Release v3.0.1

Configuration

Plugins may be provided configuration options in one of four ways. In order of precendece:

• From the command line

• Upon instantiation of Stoq()

• Defined in stoq.cfg

• Defined in the plugin’s .stoq configuration file

Command Line

When running stoq from the command line, simply add --plugin-opts to your arguments followed by the
desired plugin options. The syntax for plugin options is:

plugin_name:option=value

For example, if we want to tell the plugin dirmon to monitor the directory /tmp/monitor for new files by setting
the option source_dir, the syntax would be:

dirmon:source_dir=/tmp/monitor

Instantiation

When using stoQ as a framework, plugin options may be defined when instantiating Stoq using the plugin_opts
argument:

>>> from stoq import Stoq
>>> plugin_options = {'dirmon': {'source_dir': '/tmp/monitor'}}
>>> s = Stoq(plugin_opts=plugin_options)

stoq.cfg

The recommended location for storing static plugin configuration options is in stoq.cfg. The reason for this if all
plugin options defined in the plugin’s .stoq file will be overwritten when the plugin is upgraded.

To define plugin options in stoq.cfg simply add a section header of the plugin name, then define the plugin options.
For example, to define the plugin option source_dir for the dirmon plugin, the below can be added to stoq.
cfg:

[dirmon]
source_dir = /tmp/monitor

26 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Plugin .stoq configuration file

Each plugin must have a .stoq configuration file. The configuration file resides in the same directory as the plugin
module. The plugin’s configuration file allows for configuring a plugin with default or static settings. The configuration
file is a standard YAML file and is parsed using the configparser module. The following is an example plugin
configuration file with all required fields:

[Core]
Name = example_plugin
Module = example_plugin

[Documentation]
Author = PUNCH Cyber
Version = 0.1
Website = https://github.com/PUNCH-Cyber/stoq-plugins-public
Description = Example stoQ Plugin

• Core

– Name: The plugin name that stoQ will use when calling the plugin. This must be unique.

– Module: The python module that contains the plugin (without the .py extension).

• Documentation

– Author: Author of the plugin

– Version: Plugin version

– Website: Website where the plugin can be found

– Description: Description of the plugins utility

Additionally, some optional settings may be defined:

[options]
min_stoq_version = 3.0.0

• options

– min_stoq_version: Minimum version of stoQ required to work properly. If the version of stoQ is less
than the version defined, a warning will be raised.

Note: Plugin options must be under the [options] section header to be accessible via the other plugin configuration
options.

Warning: Plugin configuration options may be overwritten when a plugin is upgraded. Upgrading plugins is
a destructive operation. This will overwrite/remove all data within the plugins directory, to include the plugin
configuration file. It is highly recommended that the plugin directory be backed up regularly to ensure important
information is not lost, or plugin configuration options be defined in stoq.cfg.

1.6. Guides 27

stoQ Documentation, Release v3.0.1

Multiclass Plugins

Plugins that are of more than one plugin class are called Multiclass Plugins. Multiclass plugins help to simplify and
centralize plugin code. Development is nearly identical to creating a regular plugin.In order to create a Multiclass
plugin, the plugin must be a subclass of one or more plugin class.

In this example, we will create a Multiclass plugin that is a worker as well as a dispatcher plugin. We simply need
to subclass our plugin class with WorkerPlugin and DispatcherPlugin and ensure the scan (required for
worker plugins) and get_dispatches (required for dispatcher plugins) methods exist.:

from typing import Optional
from stoq import Payload, Request, WorkerResponse
from stoq.plugins import DispatcherPlugin, WorkerPlugin

class MultiClassPlugin(WorkerPlugin, DispatcherPlugin):
async def scan(

self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:

do worker plugin stuff here
return

async def get_dispatches(
self, payload: Payload, request: Request

) -> Optional[DispatcherResponse]:
do dispatcher plugin stuff here
return

Plugin Logging

Upon instantiation, plugins are provided a Logger object within the plugin class named self.log. This is just a
standard Python logging object that supports the log levels debug, info, warning, error, and critical.:

from typing import Optional
from stoq.plugins import WorkerPlugin
from stoq import Payload, Request, WorkerResponse

class LoggingPlugin(WorkerPlugin):
async def scan(

self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:

self.log.info('Scanning payload now')

Errors

Errors from plugins must be handled with the Error class. This helps to ensure a consistent and standardized
error message handling across the framework. All plugin classes are capable of handling errors, except for the
ConnectorPlugin class. The following is an example of adding a error to a WorkerResponse.:

from typing import Optional
from stoq.plugins import WorkerPlugin
from stoq import Error, Payload, Request, WorkerResponse

class ErrorPlugin(WorkerPlugin):
(continues on next page)

28 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

async def scan(
self, payload: Payload, request: Request

) -> Optional[WorkerResponse]:
errors: List[Error] = []
errors.append(

Error(
error='This is an error message that will be in StoqResponse',
plugin_name=self.plugin_name,
payload_id=payload.results.payload_id

)
)
return WorkerResponse(errors=errors)

Classes

Archiver Plugins

Overview

Archiver plugins are used for retrieving or saving scanned payloads. A payload can be anything from the initial
payload scanned, or extracted payloads from previous scans. There are two types of archivers, source and destination.

destination

Archiver plugins used as a destination useful for saving payloads, be it the original scanned payload or any extracted
payloads. Multiple destination archivers can be defined, allowing for a payload to be saved in either a single or multiple
locations. The results from this plugin method may be used to subsequently load the payload again.

Destination archiver plugins can be defined multiple ways. In these examples, we will use the filedir archiver
plugin.

From stoq.cfg:

[core]
dest_archivers = filedir

Note: Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -A filedir [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> dest_archivers = ['filedir']
>>> s = Stoq(dest_archivers=dest_archivers)

1.6. Guides 29

stoQ Documentation, Release v3.0.1

source

Archiver plugins used as a source retrieve payloads for scanning. This is useful in several use cases, such as when using
a provider plugin that isn’t able to pass a payload to stoQ. For example, if the provider plugin being used leverages a
queueing system, such as RabbitMQ, there may be problems placing multiple payloads onto a queue as it is inefficient,
prone to failure, and does not scale well. With archiver plugins as a source, the queuing system can be leveraged by
sending a message with a payload location, and the archiver plugin can then retrieve the payload for scanning. The
ArchiverResponse results returned from ArchiverPlugin.archive() is used to load the payload.

Source archiver plugins can be defined multiple ways. In these examples, we will use the filedir archiver plugin.

From stoq.cfg:

[core]
source_archivers = filedir

Note: Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -S filedir [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> source_archivers = ['filedir']
>>> s = Stoq(source_archivers=source_archivers)

Writing a plugin

Unlike most other stoQ plugins, archiver plugins have two core methods, of which at least one of the below is required.

• archive

• get

The archive method is used to archive payloads that are passed to stoQ or extracted from other plugins. In order
for a payload to be archived, that attribute should_archive must be set to True in the payloads PayloadMeta
object. If set to False, the payload will not be archived.

An archiver plugin must be a subclass of the ArchiverPlugin class.

As with any plugin, a configuration file must also exist and be properly configured.

30 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Example

from typing import Dict, Optional

from stoq.plugins import ArchiverPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import ArchiverResponse, Payload, Request, PayloadMeta

class ExampleArchiver(ArchiverPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)
self.archive_path = config.get(

'options', 'archive_path', fallback='/tmp/archive_payload')

async def archive(
self, payload: Payload, request: Request

) -> Optional[ArchiverResponse]:
with open(f'{self.archive_path}', 'wb) as out:

out.write(payload.content)
ar = ArchiverResponse({'path': f'{self.archive_path}'})
return ar

async def get(self, task: ArchiverResponse) -> Optional[Payload]:
with open(task.results['path'], 'rb') as infile:

return Payload(
infile.read(),
PayloadMeta(

extra_data={'path': task.results['path']}))

Note: ArchiverPlugin.archive() returns an ArchiverResponse object, which contains metadata that is later used by
ArchiverPlugin.get() to load the payload.

API

class stoq.plugins.archiver.ArchiverPlugin(config)

async archive(payload, request)
Archive payload

Parameters

• payload (Payload) – Payload object to archive

• request (Request) – Originating Request object

Return type Optional[ArchiverResponse]

Returns ArchiverResponse object. Results are used to retrieve payload.

>>> import asyncio
>>> from stoq import Stoq, Payload
>>> payload = Payload(b'this is going to be saved')
>>> s = Stoq()

(continues on next page)

1.6. Guides 31

stoQ Documentation, Release v3.0.1

(continued from previous page)

>>> loop = asyncio.get_event_loop()
>>> archiver = s.load_plugin('filedir')
>>> loop.run_until_complete(archiver.archive(payload))
... {'path': '/tmp/bad.exe'}

async get(task)
Retrieve payload for processing

Parameters task (ArchiverResponse) – Task to be processed to load payload. Must con-
tain ArchiverResponse results from ArchiverPlugin.archive()

Return type Optional[Payload]

Returns Payload object for scanning

>>> import asyncio
>>> from stoq import Stoq, ArchiverResponse
>>> s = Stoq()
>>> loop = asyncio.get_event_loop()
>>> archiver = s.load_plugin('filedir')
>>> task = ArchiverResponse(results={'path': '/tmp/bad.exe'})
>>> payload = loop.run_until_complete(archiver.get(task))

Response

class stoq.data_classes.ArchiverResponse(results=None, errors=None)
Object containing response from archiver destination plugins

Parameters

• results (Optional[Dict]) – Results from archiver plugin

• errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import ArchiverResponse
>>> results = {'file_id': '12345'}
>>> archiver_response = ArchiverResponse(results=results)

Connector Plugins

Overview

The last plugin class is the Connector plugin. This plugin class allows for the saving or passing off of the final result.
Once all other plugins have completed their tasks, the final result is sent to the loaded connector plugins for handling.
For example, a connector plugin may save results to disk, ElasticSearch, or even pass them off to a queueing system
such as RabbitMQ.

Connector plugins can be defined multiple ways. In these examples, we will use the filedir connector plugin,
allowing results to be saved to disk.

From stoq.cfg:

[core]
connectors = filedir

32 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Note: Multiple plugins can be defined separated by a comma.

From the command line:

$ stoq run -C filedir [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> connectors = ['filedir']
>>> s = Stoq(connectors=connectors, [...])

Writing a plugin

A connector plugin must be a subclass of the ConnectorPlugin class.

As with any plugin, a configuration file must also exist and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import ConnectorPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import StoqResponse

class ExampleConnector(ConnectorPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)
self.output_file = config.get(

'options', 'output_file', fallback='/tmp/stoqresult.txt')

async def save(self, response: StoqResponse) -> None:
with open(f'{self.output_file}', 'w') as result:

result.write(response)

API

class stoq.plugins.connector.ConnectorPlugin(config)

abstract async save(response)

Return type None

1.6. Guides 33

stoQ Documentation, Release v3.0.1

Decorator Plugins

Overview

Decorator plugins are the last plugins run just before saving results. This plugin class allows for the analysis of all
results from each plugin, the original payload, and any extracted payloads. Multiple decorator plugins can be loaded,
but each plugin is only passed the results once. Decorator plugins are extremely useful when post-processing is
required of the collective results from the entire stoQ workflow.

Decorator plugins can be defined multiple ways. In these examples, we will use the test_decorator decorator
plugin.

From stoq.cfg:

[core]
decorators = test_decorator

Note: Multiple plugins can be defined separated by a comma.

From the command line:

$ stoq run -D yara [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> decorators = ['test_decorator']
>>> s = Stoq(decorators=decorators, [...])

Writing a plugin

A decorator plugin must be a subclass of the DecoratorPlugin class. Results from a decorator are appended to
the final StoqResponse object.

As with any plugin, a configuration file must also exist and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import DecoratorPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import StoqResponse, DecoratorResponse

class ExampleDecorator(DecoratorPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)

(continues on next page)

34 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

self.msg = config.get('options', 'msg', fallback='do_more msg')

async def decorate(self, response: StoqResponse) -> Optional[DecoratorResponse]:
do_more = False
if 'yara' in response.results[0].plugins_run:

do_more = True
dr = DecoratorResponse({'do_more': do_more, 'msg': self.msg})
return dr

API

class stoq.plugins.decorator.DecoratorPlugin(config)

abstract async decorate(response)

Return type Optional[DecoratorResponse]

Response

class stoq.data_classes.DecoratorResponse(results=None, errors=None)

Object containing response from decorator plugins

Parameters

• results (Optional[Dict]) – Results from decorator plugin

• errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import DecoratorResponse
>>> results = {'decorator_key': 'decorator_value'}
>>> errors = ['This plugin failed for a reason']
>>> response = DecoratorResponse(results=results, errors=errors)

Dispatcher Plugins

Overview

Dispatcher plugins allow for dynamic routing and loading of worker plugins. These plugins are extremely powerful
in that they allow for an extremely flexible scanning flow based on characteristics of the payload itself. For instance,
routing a payload to a worker plugin for scanning can be done by yara signatures, TRiD results, simple regex matching,
or just about anything else. Each loaded dispatcher plugin is run once per payload.

Dispatcher plugins can be defined multiple ways. In these examples, we will use the yara dispatcher plugin.

From stoq.cfg:

[core]
dispatchers = yara

1.6. Guides 35

stoQ Documentation, Release v3.0.1

Note: Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -R yara [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> dispatchers = ['yara']
>>> s = Stoq(dispatchers=dispatchers, [...])

Now, let’s write a simple yara rule to pass a payload to the pecarve plugin if a DOS stub is found:

rule exe_file
{

meta:
plugin = "pecarve"
save = "True"

strings:
$MZ = "MZ"
$ZM = "ZM"
$dos_stub = "This program cannot be run in DOS mode"
$win32_stub = "This program must be run under Win32"

condition:
($MZ or $ZM) and ($dos_stub or $win32_stub)

}

In this case, if this yara signature hits on a payload, the payload will be passed to the pecarve plugin, which will then
extract the PE file as a payload, and send it to stoQ for continued scanning. Additionally, because save = "True",
the extracted payload will also be saved if a Destination Archiver plugin is defined.

Writing a plugin

A dispatcher plugin must be a subclass of the DispatcherPlugin class.

As with any plugin, a configuration file must also exist and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import DispatcherPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import Payload, DispatcherResponse, Request

class ExampleDispatcher(DispatcherPlugin):
def __init__(self, config: StoqConfigParser) -> None:

(continues on next page)

36 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

super().__init__(config)
self.msg = config.get('options', 'msg', fallback='Useful content here')

async def get_dispatches(
self, payload: Payload, request: Request

) -> Optional[DispatcherResponse]:
dr = DispatcherResponse()
dr.meta['example_key'] = 'Useful metadata info'
dr.meta['msg'] = self.msg
return dr

API

class stoq.plugins.dispatcher.DispatcherPlugin(config)

abstract async get_dispatches(payload, request)

Return type Optional[DispatcherResponse]

Response

class stoq.data_classes.DispatcherResponse(plugin_names=None, meta=None, er-
rors=None)

Object containing response from dispatcher plugins

Parameters

• plugins_names – Plugins to send payload to for scanning

• meta (Optional[Dict]) – Metadata pertaining to dispatching results

• errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import DispatcherResponse
>>> plugins = ['yara', 'exif']
>>> meta = {'hit': 'exe_file'}
>>> dispatcher = DispatcherResponse(plugin_names=plugins, meta=meta)

Provider Plugins

Overview

Provider plugins are designed for passing multiple payloads, or locations of payloads, to stoQ. They allow for multiple
payloads to be run against stoQ until the source is exhausted. As such, they are useful for monitoring directories for
new files, subscribing to a queue (i.e., RabbitMQ, Google PubSub, ZeroMQ), or scanning entire directories recursively.
Multiple provider plugins can be provided allowing for even more flexibility. Provider plugins may either send a
payload to stoQ for scanning, or send a message that an Archiver plugin is able to handle for loading of a payload.

Note: Provider plugins are not available when using scan mode. This is due to scan mode being designed for
individual scans, not multiple payloads.

1.6. Guides 37

stoQ Documentation, Release v3.0.1

Provider plugins can be defined multiple ways. In these examples, we will use the dirmon provider plugin.

From stoq.cfg:

[core]
providers = dirmon

Note: Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -P dirmon [...]

Note: Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> providers = ['dirmon']
>>> s = Stoq(providers=providers, [...])

Writing a plugin

Provider plugins add Payload or Request objects to the stoQ queue, or a str. If a Payload object is added,
stoQ will begin processing the payload. If a Request object is added, stoQ will begin processing the request (which
should contain at least one payload). If a str is added, stoQ will pass it to Archiver plugins that were loaded when
Stoq was instantiated with the source_archivers argument.

A provider plugin must be a subclass of the ProviderPlugin class.

As with any plugin, a configuration file must also exist and be properly configured.

If a Request object is added to the queue and has request_meta set, then the request_meta passed to the Stoq run()
method is ignored for this request.

Example

from asyncio import Queue
from typing import Dict, Optional

from stoq import Payload, PayloadMeta
from stoq.plugins import ProviderPlugin
from stoq.helpers import StoqConfigParser

class ExampleProvider(ProviderPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)
self.meta = config.get('options', 'meta', fallback='This msg will always be')

async def ingest(self, queue: Queue) -> None:
(continues on next page)

38 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

payload_meta = PayloadMeta(extra_data={'msg': self.meta})
await queue.put(Payload(b'This is a payload', payload_meta=payload_meta))

API

class stoq.plugins.provider.ProviderPlugin(config)

abstract async ingest(queue)

Return type None

Worker Plugins

Overview

Worker plugins are the primary data producers within stoQ. These plugins allow for tasks such as scanning payloads
with yara, hashing payloads, and even extracting indicators of compromise (IOC) from documents. Worker plugins can
be defined in all scanning modes. Additionally worker plugins can be dynamically loaded using dispatching plugins.
More information on dispatcher plugins can be found in the dispatcher plugin section.

Worker plugins can be defined multiple ways. In these examples, we will use the hash worker plugin.

From the command line, worker plugins can be defined two different ways, depending on the use.

If only the original payload must be scanned, then --start-dispatch or -s command line argument may be
used.:

$ stoq scan -s hash [...]

However, if the original payload and all subsequent payloads must be scanned, the --always-dispatch or -a
command line argument may be used:

$ stoq scan -a hash [...]

Note: The difference between --start-dispatch and --always-dispatch can be somewhat confusing.
The primary difference between the two is that if a worker plugin extracts any payloads for further scanning, any
extracted payloads will only be scanned by workers defined by --always-dispatch. If --start-dispatch
was used, the plugin defined will not be used to scan any extracted payloads.

Or, when instantiating the Stoq() class:

>>> import stoq
>>> workers = ['yara']
>>> s = Stoq(always_dispatch=workers, [...])

Lastly, worker plugins can be defined by dispatcher plugins. As mentioned previously, more information on them can
be found in the dispatcher plugin section

1.6. Guides 39

stoQ Documentation, Release v3.0.1

Writing a plugin

A worker plugin must be a subclass of the WorkerPlugin class.

As with any plugin, a configuration file must also exist and be properly configured.

Example

from typing import Dict, List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (

Payload,
Request,
WorkerResponse,

)

class ExampleWorker(WorkerPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)
self.useful = config.getboolean('options', 'useful', fallback=False)

async def scan(
self, payload: Payload, request: Request

) -> Optional[WorkerResponse]:
response = {'worker_results': f'useful: {self.useful}'}
return WorkerResponse(response)

Required Workers

required_workers is a configuration option specific to WorkerPlugin class. The purpose of this option is to allow a
user to define worker dependencies. For example, WorkerA must be run after WorkerB because WorkerA requires the
results from WorkerB to run successfully. This configuration option may be set in the .stoq configuration file for the
WorkerPlugin, or within the __init__ function.

from typing import List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (

Payload,
Request,
WorkerResponse,

)
class WorkerA(WorkerPlugin):

def __init__(self, config: StoqConfigParser) -> None:
super().__init__(config)
self.required_workers = config.getset(

'options', 'required_workers', fallback=set('WorkerB')
)

async def scan(

(continues on next page)

40 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

(continued from previous page)

self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:

is_bad: bool = payload.results.workers['WorkerB']['is_bad']
response = {'worker_results': f'is_bad: {is_bad}'}
return WorkerResponse(response)

Extracted Payloads

Worker plugins may also extract payloads, and return them to Stoq for further analysis. Each extracted payload that
is returned will be inserted into the same workflow as the original payload.

from typing import Dict, List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (

ExtractedPayload,
Payload,
PayloadMeta,
RequestMeta,
WorkerResponse,

)

class ExampleWorker(WorkerPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)
self.useful = config.getboolean('options', 'useful', fallback=False)

async def scan(
self, payload: Payload, request: Request

) -> Optional[WorkerResponse]:
extracted_payloads: List = []
extracted_payloads.append(ExtractedPayload(b'Lorem ipsum'))
response = {'worker_results': f'useful: {self.useful}'}
return WorkerResponse(response, extracted=extracted_payloads)

Dispatch To

In some cases it may be useful for a worker plugin to dicate which plugins an extracted payload is scanned with.

>>> meta = PayloadMeta(dispatch_to=['yara'])
>>> extracted_payload = ExtractedPayload(b'this is a payload with bad stuff', meta)

1.6. Guides 41

stoQ Documentation, Release v3.0.1

Should Scan

Likewise, there may be cases where an extracted payload should not be scanned by workers, but should be added to
the results or archived. Simply set PayloadMeta.should_scan to False.

>>> meta = PayloadMeta(should_scan=False)
>>> extracted_payload = ExtractedPayload(b'this is a payload', meta)

API

class stoq.plugins.worker.WorkerPlugin(config)

abstract async scan(payload, request)

Return type Optional[WorkerResponse]

Response

class stoq.data_classes.WorkerResponse(results=None, extracted=None, errors=None, dis-
patch_to=None)

Object containing response from worker plugins

Parameters

• results (Optional[Dict]) – Results from worker scan

• extracted (Optional[List[ExtractedPayload]]) – ExtractedPayload ob-
jects of extracted payloads from scan

• errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import WorkerResponse, ExtractedPayload
>>> results = {'is_bad': True, 'filetype': 'executable'}
>>> extracted_payload = [ExtractedPayload(content=data, payload_meta=extracted_
→˓meta)]
>>> response = WorkerResponse(results=results, extracted=extracted_payload)

Upgrading Plugins

v2 to v3

With the release of stoQ v3, a few enhancements were introduced that requires v2 plugins be slightly modified for use
with v3. Some key changes include:

• Full asyncio support with all plugins

• The entire request state is passed to dispatchers, workers, and archivers. This includes making all payloads, and
their respective results, available to them.

• A Logger object is now available to all plugins upon instantiation

• Errors from plugins are no longer simply a list of strings, they are now a list of Error objects

• Configuration parameters are passed to each plugin as a StoqConfigParser object rather than a
ConfigParser object

42 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

• DeepDispatcher plugins have been deprecated

__init__

All plugin classes are instantiated exactly the same way. If the plugin requires additional configuration options, the
__init__ function may be added to your plugin class.

Key Changes:

• from configparser import ConfigParser has been replaced with a helper function and should be
imported as from stoq.helpers import StoqConfigParser

• plugins_opts has been deprecated. All plugin options are now available within the config argument.
plugins_opts must be removed from the __init__ signature as well as from super().__init__

v2

from typing import Dict, Optional
from configparser import ConfigParser

class MyPlugin(ConnectorPlugin):
def __init__(self, config: ConfigParser, plugin_opts: Optional[Dict]) -> None:

super().__init__(config, plugin_opts)

if plugin_opts and 'my_setting' in plugin_opts:
self.my_setting = plugin_opts['my_setting']

elif config.has_option('options', 'my_setting'):
self.my_setting = config.get('options', 'my_setting')

else:
self.my_setting = None

v3

from stoq.helpers import StoqConfigParser

class MyPlugin(ConnectorPlugin):
def __init__(self, config: StoqConfigParser) -> None:

super().__init__(config)

self.my_setting = config.get('options', 'my_setting', fallback=None)

ArchiverPlugin

Key Updates:

• import of RequestMeta is replaced with Request

• The archive function signature accepts a Request object rather than RequestMeta

• def archive is an async function, and must be changed to async def archive

• def get is an async function, and must be changed to async def get

1.6. Guides 43

stoQ Documentation, Release v3.0.1

v2

from stoq.plugins import ArchiverPlugin
from stoq import Payload, RequestMeta, ArchiverResponse

class MyArchiver(ArchiverPlugin):
def archive(

self, payload: Payload, request_meta: RequestMeta
) -> ArchiverResponse

return ArchiverResponse

def get(self, task: ArchiverResponse) -> Payload:
return Payload()

v3

from stoq.plugins import ArchiverPlugin
from stoq import Payload, RequestMeta, ArchiverResponse

class MyArchiver(ArchiverPlugin):
async def archive(

self, payload: Payload, request: Request
) -> ArchiverResponse

return ArchiverResponse

async def get(self, task: ArchiverResponse) -> Payload:
return Payload()

ConnectorPlugin

Key Updates:

• def save is an async function, and must be changed to async def save

v2

from stoq.plugins import ConnectorPlugin
from stoq import StoqResponse

class MyConnector(ConnectorPlugin):
def save(self, response: StoqResponse) -> None:

print(f'saving: {response}')

44 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

v3

from stoq.plugins import ConnectorPlugin
from stoq import StoqResponse

class MyConnector(ConnectorPlugin):
async def save(self, response: StoqResponse) -> None:

print(f'saving: {response}')

DecoratorPlugin

Key Updates:

• def decorate is an async function, and must be changed to async def decorate

v2

from stoq.plugins import DecoratorPlugin
from stoq import StoqResponse, DecoratorResponse

class MyDecorator(DecoratorPlugin):
def decorate(self, response: StoqResponse) -> DecoratorResponse:

return DecoratorResponse()

v3

from stoq.plugins import DecoratorPlugin
from stoq import StoqResponse, DecoratorResponse

class MyDecorator(DecoratorPlugin):
async def decorate(self, response: StoqResponse) -> DecoratorResponse:

return DecoratorResponse()

DispatcherPlugin

Key Updates:

• import of RequestMeta is replaced with Request

• The get_dispatches function signature accepts a Request object rather than RequestMeta

• def get_dispatches is an async function, and must be changed to async def get_dispatches

1.6. Guides 45

stoQ Documentation, Release v3.0.1

v2

from stoq.plugins import DispatcherPlugin
from stoq import Payload, RequestMeta, DispatcherResponse

class MyDispatcher(DispatcherPlugin):
def get_dispatches(

self, payload: Payload, request_meta: RequestMeta
) -> DispatcherResponse:

return DispatcherResponse()

v3

from stoq.plugins import DispatcherPlugin
from stoq import Payload, Request, DispatcherResponse

class MyDispatcher(DispatcherPlugin):
async def get_dispatches(

self, payload: Payload, request: Request
) -> DispatcherResponse:

return DispatcherResponse()

ProviderPlugin

Key Updates:

• from queue import Queue is replaced with from asyncio import Queue

• def ingest is an async function, and must be changed to async def ingest

• When placing objects on the Queue, the call must be awaited, await queue.put()

v2

from queue import Queue
from stoq.plugins import ProviderPlugin
from stoq import Payload

class MyProvider(ProviderPlugin):
def ingest(self, queue: Queue) -> None:

queue.put(Payload(b'This is my payload'))

46 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

v3

from asyncio import Queue
from stoq.plugins import ProviderPlugin
from stoq import Payload

class MyProvider(ProviderPlugin):
async def ingest(self, queue: Queue) -> None:

await queue.put(Payload(b'This is my payload'))

WorkerPlugin

Key Updates:

• import of RequestMeta is replaced with Request

• The scan function signature accepts a Request object rather than RequestMeta

• def scan is an async function, and must be changed to async def scan

v2

from stoq.plugins import WorkerPlugin
from stoq import Payload, RequestMeta, WorkerResponse

class MyWorker(WorkerPlugin):
def scan(self, payload: Payload, request_meta: RequestMeta) -> WorkerResponse:

return WorkerResponse()

v3

from stoq.plugins import WorkerPlugin
from stoq import Payload, Request, WorkerResponse

class MyWorker(WorkerPlugin):
async def scan(self, payload: Payload, request: Request) -> WorkerResponse:

return WorkerResponse()

Packaging Plugins

stoQ has a built-in plugin installation and upgrade capability. stoQ plugins may be packaged to allow for a simple
and consistent installation process. Though packaging plugins isn’t a necessity, it is highly recommended to do so for
simplicity and reproducibility.

Let’s take a look at a basic directory structure for a stoQ plugin:

1.6. Guides 47

stoQ Documentation, Release v3.0.1

|-- example_plugin/
| `-- setup.py
| `-- MANIFEST.in
| `-- requirements.txt
| `-- example_plugin/
| `-- __init__.py
| `-- example_plugin.py
| `-- example_plugin.stoq

stoQ plugin packages leverage python’s packaging library, setuptools. When a plugin is installed, pip is used for
package management and installation. As such, all rules for both apply for stoQ plugins.

setup.py

The setup.py file is a standard setuptools script. include_package_data should always be set to True to
ensure the plugin configuration file and any additional files are properly installed.

from setuptools import setup, find_packages
setup(

name="example_plugin",
version="3.0.0",
author="Marcus LaFerrera (@mlaferrera)",
url="https://github.com/PUNCH-Cyber/stoq-plugins-public",
license="Apache License 2.0",
description="Example stoQ plugin",
packages=find_packages(),
include_package_data=True,

)

MANIFEST.in

The manifest file ensure that the plugins .stoq configuration file, and any other required files, are installed alongside
the plugin. More information on the .stoq configuration file can be found here.

include example_plugin/*.stoq

requirements.txt

If a requirements file exists, stoQ will install dependencies appropriately. They will not be installed along side the
plugin, but rather in python’s system path. This file is not required if no additional dependencies need to be installed.

plugin subdirectory

The subdirectory above, example_plugin, is the primary plugin directory. This is the core location for the stoQ
plugin that will be installed into the stoQ plugin directory. The plugin module, along with files identified in MANI-
FEST.in will be copied.

More information on writing a plugin can be found here.

48 Chapter 1. Overview

stoQ Documentation, Release v3.0.1

Examples

There are plenty of examples for packaging plugin in stoQ’s public plugin repository.

Frequently Asked Questions

• What is the difference between stoQ v2 and v3?

The basic workflow and concept between the two versions are nearly similar, but under the hood a
lot has changed. Version 2 of stoQ was a complete rewrite of v1, filled with lots of lessons learned,
optimizations, and best practices. Additionally, we made the decision to ensure a modern version of
python was used in order to leverage many of the added benefits and features.

stoQ v3 built upon v2, but added many additional features such as native AsyncIO support, stream-
lined data flow, and passing the full request stte to each worker plugin. A full list of changes can be
found in the CHANGELOG.

• Are plugins from v2 compatiable with v3?

Unfortunately, no. However, porting plugins to v3 is very simple. You can read more about that here.

• Is v1 or v2 of stoQ still available?

Absolutely, though they are no longer maintained (minus major bug fixes or security issues) in favor
of v3.

• Why should I use stoQ?

Because your time is valuable and there are better things to do with it than run the same tools over
and over again. stoQ allows you to automate most of the mundane tasks analysts do on a daily basis.
It also allows you to do this scanning at scale, against a few to hundreds of millions of payloads daily.

• How long has stoQ been around?

We started developing stoQ back in 2011 to help automate and streamline many of our day to day
tasks. In 2015, after several years of developing and real world use in large enterprise environments,
we decided to open source the entire framework, along with many plugins.

• Why is everything a plugin?

Flexibility. When we started building stoQ we didn’t want to have to reengineer it if we switched
databases, or if we wanted to use a different queuing system, or some other random piece of our
workflow changed. By leveraging plugins, it’s simple a matter of adding or removing them.

• Can stoQ be used for more than just file analysis?

Absolutely. We’ve used it for everything from processing threat intel feeds, to scanning e-mails (and
their attachments), to slack bots.

• How does stoQ work at scale?

As with anything that “scales”, it depends. Infrastructure, location, resources, and many other things
come into play. In our experience, it is possible to scan hundreds of millions of payloads per day
with the right setup. Overall, we have been very pleased with it’s ability to scale to fit all of our needs
without issue.

• stoQ seems slow when decoding json, can this be improved?

Possibly. stoQ leverages BeautifulSoup’s UnicodeDammit function to serialize bytes into proper json
serializable content. In order to limit the python library requirements and maximize compatibility,
we purposefully limit core dependencies. BeautifulSoup by default attempts to leverage the python
library cchardet, which is much more efficient than the default python library that BeautifulSoup falls

1.6. Guides 49

https://github.com/PUNCH-Cyber/stoq-plugins-public
https://github.com/PUNCH-Cyber/stoq/blob/master/CHANGELOG.md

stoQ Documentation, Release v3.0.1

back to chardet. Simply install cchardet via pip, and you may see a nice performance boost if you
have complex results with bytes.

• I know stoQ supports async operations, but my plugins don’t seem to be completing any faster!

While all current stoQ plugins support the latest version of stoQ, not all of them will run asyn-
chronously. There are several reasons for this. Some depend on 3rd party libraries that are not
asyncio compatiable. For these, we will keep an eye out for updated 3rd party libraries that support
asyncio. For many others, it is simply a matter of competing priorities. We, and very gratefully,
several contributors to stoQ have been updating plugins for full asyncio support, it is still a time con-
suming process. If you would like to help in this effort, please do! We are more than happy to accept
all of the help you are willing to volunteer.

• Do you plan on maintaining this project long term?

Absolutely. We use stoQ in several production grade capabilities, as do many stoQ users. We’ve been
developing it since 2011, and will continue to do so.

• Can I contribute?

Of course! Check out the contributing section to find out how.

• Something seems broken, how can I get help?

Feel free to submit an issue.

• How can I ask other questions?

Feel free to join us on spectrum, reach out to us at @punchcyber or the author @mlaferrera

1.6.2 Community Guide

Community Guide

Looking at learning more about the project and how to contribute? Read on.

Contributing

Welcome

Thank you for considering contributing to stoQ. It’s people like you that keep projects relevant and useful for the
community. Our team looks forward to collaborating with you.

How to Contribute

There are many ways to contribute, especially since stoQ is a full stack project. Our team is small so any contributions
are more than welcome :) That includes tutorials, posts, documentation improvements, bug reports, feature requests,
etc.

50 Chapter 1. Overview

https://github.com/PUNCH-Cyber/stoq/issues
https://spectrum.chat/stoq
https://twitter.com/punchcyber
https://twitter.com/mlaferrera

stoQ Documentation, Release v3.0.1

Ground Rules

Expectations

Keep in mind that repository maintainers and community contributors for stoQ are volunteers. Respect amongst
participants must be maintained at all times and collaboration should be constructive. Everyone is expected to act in
accordance with the project’s Code of Conduct

How to report a bug

Security Disclosures

If you find a security vulnerability, do NOT open an issue. Email info @ punchcyber.com instead.

Other Bug Disclosures

For other bugs, please open an issue on our issues list on Github and include as much information as possible.

Suggest Features or Enhancements

If you have an idea for a feature that doesn’t exist in stoQ, there are likely others out there with a similar need. Open
an issue on our issues list on GitHub which describes the feature you would like to see, why you need it, and how it
should work.

Code review process

Contribution Acceptance

Our team is small so Pull Requests are reviewed as time allows. Depending on the size of the request this may take
some time. However, request submitters can expect initial comments or a status update from our team within two
weeks. Please be patient :)

Code of Conduct

Simply put, just be nice.

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

1.6. Guides 51

stoQ Documentation, Release v3.0.1

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
info@punchcyber.com. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

52 Chapter 1. Overview

mailto:info@punchcyber.com

stoQ Documentation, Release v3.0.1

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

[homepage]: https://www.contributor-covenant.org

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

1.6. Guides 53

https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org
https://www.contributor-covenant.org/faq

stoQ Documentation, Release v3.0.1

54 Chapter 1. Overview

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

55

stoQ Documentation, Release v3.0.1

56 Chapter 2. Indices and tables

PYTHON MODULE INDEX

s
stoq, 18
stoq.core, 18
stoq.plugins.archiver, 29
stoq.plugins.connector, 32
stoq.plugins.decorator, 34
stoq.plugins.dispatcher, 35
stoq.plugins.provider, 37
stoq.plugins.worker, 39

57

stoQ Documentation, Release v3.0.1

58 Python Module Index

INDEX

A
archive() (stoq.plugins.archiver.ArchiverPlugin

method), 31
ArchiverPlugin (class in stoq.plugins.archiver), 31
ArchiverResponse (class in stoq.data_classes), 32

C
ConnectorPlugin (class in stoq.plugins.connector),

33

D
decorate() (stoq.plugins.decorator.DecoratorPlugin

method), 35
DecoratorPlugin (class in stoq.plugins.decorator),

35
DecoratorResponse (class in stoq.data_classes), 35
DispatcherPlugin (class in

stoq.plugins.dispatcher), 37
DispatcherResponse (class in stoq.data_classes),

37

G
get() (stoq.plugins.archiver.ArchiverPlugin method),

32
get_dispatches() (stoq.plugins.dispatcher.DispatcherPlugin

method), 37

I
ingest() (stoq.plugins.provider.ProviderPlugin

method), 39

P
ProviderPlugin (class in stoq.plugins.provider), 39

R
reconstruct_all_subresponses()

(stoq.core.Stoq method), 24
run() (stoq.core.Stoq method), 24

S
save() (stoq.plugins.connector.ConnectorPlugin

method), 33

scan() (stoq.core.Stoq method), 25
scan() (stoq.plugins.worker.WorkerPlugin method), 42
scan_request() (stoq.core.Stoq method), 25
Stoq (class in stoq.core), 24
stoq (module), 18
stoq.core (module), 18
stoq.plugins.archiver (module), 29
stoq.plugins.connector (module), 32
stoq.plugins.decorator (module), 34
stoq.plugins.dispatcher (module), 35
stoq.plugins.provider (module), 37
stoq.plugins.worker (module), 39
StoqException, 25
StoqPluginException, 25
StoqPluginNotFound, 25

W
WorkerPlugin (class in stoq.plugins.worker), 42
WorkerResponse (class in stoq.data_classes), 42

59

	Overview
	History
	Why use stoQ?
	Philosophy
	Architecture
	Example Output
	Guides
	User and Development Guide
	Community Guide

	Indices and tables
	Python Module Index
	Index

