

stoQ: automation. simplified.

Release v3.0.1

[image: _images/stoq-framework.svg]
 [https://pypi.org/project/stoq-framework/][image: _images/stoq-framework1.svg]
 [https://pypi.org/project/stoq-framework/][image: _images/stoq.svg]
 [https://api.travis-ci.org/PUNCH-Cyber/stoq.svg?branch=master][image: _images/badge.svg]
 [https://coveralls.io/github/PUNCH-Cyber/stoq?branch=master]
Overview

stoQ is an automation framework that helps to simplify the mundane and repetitive
tasks an analyst is required to do. It enables analysts and DevSecOps teams to
quickly transition between different data sources, databases, decoders/encoders,
and numerous other tasks using enriched and consistent data structures. stoQ was
designed to be enterprise ready and scalable, while also being lean enough for
individual security researchers.

History

stoQ was initially a collection of scripts that helped us solve problems we encountered
daily. These tasks, such as parsing an SMTP session, extracting attachments, scanning
them with a multitude of custom and open source tools, saving the results, and then
finally analyzing them took up an increasing amount of our team’s resources. We spent
an ever increasing amount of time simply attempting to collect and extract data. This
took valuable resources away from our ability to actually find and analyze adversaries
targeting our networks.

We grew tired of being the hamster in a wheel and decided to do something about it.
In 2011, we began development of a framework that would not only tackle the problem
above, but also allow us to quickly change the flow of data and automated analytics,
quickly pivot to new databases to house the results, and simply be able to respond
to the adversaries changing their tactics, techniques, and procedures (TTPs).

Most importantly, our focus was to build a tool that would allow us to do what we
love to do – defend networks from adversaries that are determined, focused, and relentless.

In 2015, after stoQ had been matured in multiple large scale operational networks, we
decided to open source our work in hopes of helping the wider Network Defense community.
Since then, we’ve been constantly enhancing stoQ thanks to the feedback and contributions
from the community of stoQ users.

Why use stoQ?

Over the years, there have been several other open source solutions that have been released
that have similar capabilities to stoQ. However, stoQ is fundamentally different in many ways
when compared to other solutions available. Some key differences are:

	Extremely lightweight and designed with simplicity in mind.

	Fully supports AsyncIO

	A wide range of publicly available plugins [https://github.com/PUNCH-Cyber/stoq-plugins-public].

	stoQ makes no assumptions about your workflow. Analysts decide everything, from where data
originates, how it is scanned/decoded/processed, to where it is saved.

	Scalable in not only native/bare metal environments, but also using solutions such as
Kubernetes, AWS Lambda, Google Cloud Functions, Azure Functions, and many more.

	Written to be easily and quickly extended. All you need is a plugin.

	Can be used in an enterprise environment or by individuals without the need for client/server
infrastructure

	Over 95% of code is covered by unittests.

	All core functions and plugins leverage typing and are type-checked at commit.

	Actively developed since 2011, open source since 2015.

	Extensive up-to-date documentation [https://stoq-framework.readthedocs.io].

Philosophy

Our goal with stoQ has always been to simplify the mundane and automate the repetitive, ultimately
enabling network defenders to do what they do best – focus on the threats. Since we began development,
this philosophy has not shifted. Our core philosophy for both design and development can be best
summarized by the Zen of Python [https://www.python.org/dev/peps/pep-0020/]:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Readability counts.

Architecture

One of the most powerful features in stoQ is its flexibility. Because stoQ is a framework, the majority
of the work actually happens within the plugins. stoQ itself is meant to orchestrate the communication
between the various plugins and normalize their results. stoQ makes no assumptions on the architecture
that works best for the user. Because of this, stoQ allows for a highly configurable and flexible
architecture that can be defined by the user.

For example, analysts can run stoQ against an individual file on their local computer, or against 100’s of
millions of payloads that are extracted off the wire – and everything in between. Payloads can be dynamically
routed to plugins using yara, TRiD, and even static attributes. Results can be saved with
ElasticSearch one day, then in Splunk the next, or both at the same time. Directories can be monitored
for new files, queueing solutions such as RabbitMQ or Google PubSub can be leveraged, or mailboxes can even
be monitored for new e-mails. No matter what an analyst wants to do with stoQ, it’s simply a matter of
writing a plugin.

Example Output

As an example of output from stoQ, let’s scan a local file with ExifTool and get
the hashes of the payload:

{
 "time": "...",
 "results": [
 {
 "payload_id": "00d2f069-d716-43ed-bc2f-b0bd295574d4",
 "size": 507904,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "filename": "bad.exe"
 },
 "dispatch_to": []
 },
 "workers": {
 "hash": {
 "sha256": "47c6e9b102324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
 "md5": "16d9f6e5491d99beb46d7ab1500c1799",
 "sha1": "9e6414bf2802c98fbd13172817db80380c5eeb6a"
 },
 "exif": {
 "SourceFile": "/tmp/tmp3r4juo8e",
 "ExifToolVersion": 11.11,
 "FileName": "tmp3r4juo8e",
 "Directory": "/tmp",
 "FileSize": 507904,
 "FileModifyDate": "...",
 "FileAccessDate": "...",
 "FileInodeChangeDate": ".",
 "FilePermissions": 600,
 "FileType": "Win32 EXE",
 "FileTypeExtension": "EXE",
 "MIMEType": "application/octet-stream",
 "MachineType": 332,
 "TimeStamp": "2013:04:20 10:50:10-04:00",
 "ImageFileCharacteristics": 258,
 "PEType": 267,
 "LinkerVersion": 9.0,
 "CodeSize": 386048,
 "InitializedDataSize": 120832,
 "UninitializedDataSize": 0,
 "EntryPoint": 208320,
 "OSVersion": 5.0,
 "ImageVersion": 0.0,
 "SubsystemVersion": 5.0,
 "Subsystem": 2
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "exif",
 "hash"
]
],
 "archivers": []
 },
 "extracted_from": null,
 "extracted_by": null
 }
],
 "request_meta": {
 "archive_payloads": true,
 "source": null,
 "extra_data": {}
 },
 "errors": {},
 "decorators": {},
 "scan_id": "4d053d5e-9f4e-417b-8f0e-deea0d45449d"
}

Or, carve a few executable files out of a Microsoft Word document:

{
 "time": "...",
 "results": [
 {
 "payload_id": "e777051a-832b-489f-b74c-9949b2c9a2ce",
 "size": 558592,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "filename": "sample_doc_with_pe.doc"
 },
 "dispatch_to": []
 },
 "workers": {
 "exif": {
 "SourceFile": "/tmp/tmpbqtisxjd",
 "ExifToolVersion": 11.11,
 "FileName": "tmpbqtisxjd",
 "Directory": "/tmp",
 "FileSize": 558592,
 "FileModifyDate": "...",
 "FileAccessDate": "...",
 "FileInodeChangeDate": "...",
 "FilePermissions": 600,
 "FileType": "DOC",
 "FileTypeExtension": "DOC",
 "MIMEType": "application/msword",
 "Identification": 42476,
 "LanguageCode": 1033,
 "DocFlags": 4616,
 "System": 0,
 "Word97": 0,
 "Author": "xxxxxxxxxxxx",
 "Template": "Normal",
 "LastModifiedBy": "xxxxxxxxxxxx",
 "Software": "Microsoft Office Word",
 "CreateDate": "2017:11:13 21:27:00",
 "ModifyDate": "2017:11:13 21:28:00",
 "Security": 0,
 "CodePage": 1252,
 "Company": "",
 "CharCountWithSpaces": 20,
 "AppVersion": 14.0,
 "ScaleCrop": 0,
 "LinksUpToDate": 0,
 "SharedDoc": 0,
 "HyperlinksChanged": 0,
 "TitleOfParts": "",
 "HeadingPairs": [
 "Título",
 1
],
 "CompObjUserTypeLen": 36,
 "CompObjUserType": "Documento do Microsoft Word 97-2003",
 "LastPrinted": "0000:00:00 00:00:00",
 "RevisionNumber": 2,
 "TotalEditTime": 1,
 "Words": 3,
 "Characters": 18,
 "Pages": 1,
 "Paragraphs": 1,
 "Lines": 1
 },
 "hash": {
 "sha256": "4e3a682b2187f7c722b88af9bff5292fd7beb4d77233d1b3bc46f0bfc4891068",
 "md5": "137720063880f80270a61181b021d000",
 "sha1": "08bc0a52ee27ad0ceaa87bf394b1faa7a43bf27e"
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "pecarve",
 "exif",
 "hash"
]
],
 "archivers": []
 },
 "extracted_from": null,
 "extracted_by": null
 },
 {
 "payload_id": "471b49f3-ea99-481f-a0a3-502826e69c73",
 "size": 31232,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "offset": 11367
 },
 "dispatch_to": []
 },
 "workers": {
 "exif": {
 "SourceFile": "/tmp/tmpyi0yx_wf",
 "ExifToolVersion": 11.11,
 "FileName": "tmpyi0yx_wf",
 "Directory": "/tmp",
 "FileSize": 31232,
 "FileModifyDate": "...",
 "FileAccessDate": "...",
 "FileInodeChangeDate": "...",
 "FilePermissions": 600,
 "FileType": "Win32 EXE",
 "FileTypeExtension": "EXE",
 "MIMEType": "application/octet-stream",
 "MachineType": 332,
 "TimeStamp": "2016:07:15 21:44:45-04:00",
 "ImageFileCharacteristics": 258,
 "PEType": 267,
 "LinkerVersion": 14.0,
 "CodeSize": 8192,
 "InitializedDataSize": 22528,
 "UninitializedDataSize": 0,
 "EntryPoint": 10496,
 "OSVersion": 10.0,
 "ImageVersion": 10.0,
 "SubsystemVersion": 10.0,
 "Subsystem": 2,
 "FileVersionNumber": "10.0.14393.0",
 "ProductVersionNumber": "10.0.14393.0",
 "FileFlagsMask": 63,
 "FileFlags": 0,
 "FileOS": 262148,
 "ObjectFileType": 1,
 "FileSubtype": 0,
 "LanguageCode": "0409",
 "CharacterSet": "04B0",
 "CompanyName": "Microsoft Corporation",
 "FileDescription": "Windows Calculator",
 "FileVersion": "10.0.14393.0 (rs1_release.160715-1616)",
 "InternalName": "CALC",
 "LegalCopyright": "© Microsoft Corporation. All rights reserved.",
 "OriginalFileName": "CALC.EXE",
 "ProductName": "Microsoft® Windows® Operating System",
 "ProductVersion": "10.0.14393.0",
 "Warning": "Possibly corrupt Version resource"
 },
 "hash": {
 "sha256": "c74f41325775de4777000161a057342cc57a04e8b7be17b06576412eff574dc5",
 "md5": "40e85286357723f326980a3b30f84e4f",
 "sha1": "2e391131f9b77a8ec0e0172113692f9e2ccceaf0"
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "exif",
 "hash"
]
],
 "archivers": []
 },
 "extracted_from": "e777051a-832b-489f-b74c-9949b2c9a2ce",
 "extracted_by": "pecarve"
 },
 {
 "payload_id": "5a6279a4-df1d-4575-8587-286f5938839d",
 "size": 507904,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "offset": 50688
 },
 "dispatch_to": []
 },
 "workers": {
 "exif": {
 "SourceFile": "/tmp/tmpsiaa54tm",
 "ExifToolVersion": 11.11,
 "FileName": "tmpsiaa54tm",
 "Directory": "/tmp",
 "FileSize": 507904,
 "FileModifyDate": "...",
 "FileAccessDate": "...",
 "FileInodeChangeDate": "...",
 "FilePermissions": 600,
 "FileType": "Win32 EXE",
 "FileTypeExtension": "EXE",
 "MIMEType": "application/octet-stream",
 "MachineType": 332,
 "TimeStamp": "2013:04:20 10:50:10-04:00",
 "ImageFileCharacteristics": 258,
 "PEType": 267,
 "LinkerVersion": 9.0,
 "CodeSize": 386048,
 "InitializedDataSize": 120832,
 "UninitializedDataSize": 0,
 "EntryPoint": 208320,
 "OSVersion": 5.0,
 "ImageVersion": 0.0,
 "SubsystemVersion": 5.0,
 "Subsystem": 2
 },
 "hash": {
 "sha256": "47c6e9b102324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
 "md5": "16d9f6e5491d99beb46d7ab1500c1799",
 "sha1": "9e6414bf2802c98fbd13172817db80380c5eeb6a"
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "exif",
 "hash"
]
],
 "archivers": []
 },
 "extracted_from": "e777051a-832b-489f-b74c-9949b2c9a2ce",
 "extracted_by": "pecarve"
 }
],
 "request_meta": {
 "archive_payloads": true,
 "source": null,
 "extra_data": {}
 },
 "errors": {},
 "decorators": {},
 "scan_id": "04f9aec3-afc7-4fa1-b179-73e46c074e81"
}

Guides

User and Development Guide

Want to get started using stoQ or write your own plugins? Start reading here.

	Installation
	Minimum requirements
	Initial Setup

	Stable

	Development

	Installing Plugins
	From GitHub

	From directory

	Upgrading plugins

	Getting Started
	Configuring stoQ
	stoq.cfg

	$STOQ_HOME

	Running stoQ
	List Plugins

	Scan Mode

	Run Mode

	Plugin configuration

	RequestMeta Options

	Development
	Core
	Overview

	Framework

	Manual Interaction

	Multiple Plugin directories

	API

	Exceptions

	Plugins
	Overview

	Configuration

	Multiclass Plugins

	Plugin Logging

	Errors

	Classes

	Upgrading Plugins
	v2 to v3

	Packaging Plugins
	setup.py

	MANIFEST.in

	requirements.txt

	plugin subdirectory

	Examples

	Frequently Asked Questions

Community Guide

	Community Guide
	Contributing
	Welcome

	How to Contribute

	Ground Rules

	How to report a bug

	Suggest Features or Enhancements

	Code review process

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

Installation

stoQ is extremely lightweight and strives for minimal dependencies. It can be
installed either via pip or directly from source. Once you have stoQ installed,
it’s just a matter of installing the required plugins for your use case. stoQ has
over 40 publicly available plugins that can be found in their own repository
here [https://github.com/PUNCH-Cyber/stoq-plugins-public].

Minimum requirements

stoQ requires a minimum of python 3.6 and is recommended to be run in a python venv [https://docs.python.org/3/library/venv.html].

Initial Setup

Setup a $STOQ_HOME (defaults to ~/.stoq) folder, the necessary plugin folder and a virtual environment:

$ mkdir -p ~/.stoq/plugins
$ python3 -m venv ~/.stoq/.venv
$ source ~/.stoq/.venv/bin/activate

Stable

The simplest way to get started is to install stoQ from pip:

$ pip3 install stoq-framework

Development

If you would rather use the latest development version, you can simply clone
the repository and install from there:

$ git clone https://github.com/PUNCH-Cyber/stoq

Then, simply open the stoq directory and install:

$ cd stoq
$ python3 setup.py install

Note

Depending on your environment, you may also need to run pip3 install wheel to successfully install stoQ

Installing Plugins

There are two ways of installing stoQ plugins. All core public plugins can be installed
via the command line directly from GitHub. Additionally, plugins can be installed from a
local directory.

From GitHub

Once you have stoQ installed, you can start installing the publicly available plugins [https://github.com/PUNCH-Cyber/stoq-plugins-public].
For a full listing of plugins and a description of their functionality, you can
visit the stoQ public plugins repository here [https://github.com/PUNCH-Cyber/stoq-plugins-public].

In order to install plugins from the stoQ plugin repository, you can use the stoq command:

$ stoq install --github stoq:PLUGIN_NAME

For this example, let’s just install the yara and stdout plugins. First, let’s
install the yara plugin:

$ stoq install --github stoq:yara
Successfully installed to ~/.stoq/plugins/yara

Now, let’s install the stdout plugin:

$ stoq install --github stoq:stdout
Successfully installed to ~/.stoq/plugins/stdout

From directory

Plugins can also be installed from a local directory. This is useful if you have custom
or third party plugins. Additionally, plugins can be installed from a cloned version of
stoQ’s public plugin repository:

$ stoq install path/to/plugin

Upgrading plugins

Plugins may be upgraded (or downgraded) by adding the –upgrade command line option to the install command:

$ stoq install --upgrade --github stoq:stdout

Warning

Upgrading plugins is a destructive operation. This will overwrite/remove all data within the plugins directory,
to include the plugin configuration file. It is highly recommended that the plugin directory be backed up
regularly to ensure important information is not lost, or plugin configuration options be defined in stoq.cfg.

Getting Started

Now that stoQ is installed, getting up and running is extremely simple. stoQ can
be run a few different ways, depending on what your requirements are.

Configuring stoQ

stoq.cfg

stoQ’s configuration file is not required, but does offer the convenience of overriding the
default configuration. An example configuration file can be found
here [https://github.com/PUNCH-Cyber/stoq/blob/master/extras/stoq.cfg]. By default, stoQ will
look for stoq.cfg in $STOQ_HOME if running from the command line, or $CWD if being
used as a library.

Plugin options may also be defined in stoq.cfg. More information on how to configure plugins
in stoq.cfg can be found in plugin configuration.

$STOQ_HOME

When using the stoq command, stoQ will default to using $HOME/.stoq as it’s home directory.
This path is important as it is used as the default path for plugins and configuration files.
You can easily override this by setting the $STOQ_HOME environment variable. For example,
we can set stoQ’s home directory to /opt/stoq like so:

$ export $STOQ_HOME=/opt/stoq

Now, stoQ will look for plugins in /opt/stoq/plugins and the stoq.cfg configuration
file in /opt/stoq/stoq.cfg.

One thing to note is, $STOQ_HOME is only valid when using the stoq command. If you are
using stoQ as a library, the default path will be $CWD.

Running stoQ

The easiest way to get started is by running stoQ from the command line. There are two modes
available, scan and run. Before we get into what each more is used for, let’s see how
installed plugins can be listed.

List Plugins

Installed plugins can be easily listed by using the stoq command:

$ stoq list
stoQ :: v3.x.x :: an automated analysis framework

xdpcarve v3.0.0 Carve and decode streams from XDP documents
stdout v3.0.0 Sends content to STDOUT
rtf v3.0.0 Extract objects from RTF payloads
hash v3.0.0 Hash content
dirmon v3.0.0 Monitor a directory for newly created files for processing
vtmis-search v3.0.0 Search VTMIS API
peinfo v3.0.0 Gather relevant information about an executable using pefile
javaclass v3.0.0 Decodes and extracts information from Java Class files
filedir v3.0.0 Ingest a file or directory for processing
yara v3.0.0 Process a payload using yara
decompress v3.0.0 Extract content from a multitude of archive formats
ole v3.0.0 Carve OLE streams within Microsoft Office Documents
iocextract v3.0.0 Regex routines to extract and normalize IOC's from a payload
mraptor v3.0.0 Port of mraptor3 from oletools
trid v3.0.0 Identify file types from their TrID signature
smtp v3.0.0 SMTP Parser Worker
exif v3.0.0 Processes a payload using ExifTool
pecarve v3.0.0 Carve portable executable files from a data stream
swfcarve v3.0.0 Carve and decompress SWF files from a data stream

Scan Mode

Scan mode is designed for scanning an individual payload from the command line. This
is especially useful for lightweight tasks or one-off scans.

Let’s get started. In this example, let’s simply generate the MD5, SHA1, and SHA256
hashes of a file.

First, let’s make sure we have the required plugins installed:

$ stoq install --github stoq:hash

Now, let’s run stoq with the hash plugin:

$ stoq scan /tmp/bad.exe -s hash
{
 "time": "...",
 "results": [
 {
 "payload_id": "0acfdfcf-f298-4950-96d2-13e3f93646b5",
 "size": 507904,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "filename": "bad.exe"
 },
 "dispatch_to": []
 },
 "workers": {
 "hash": {
 "sha256": "47c6e9b402324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
 "md5": "16d9f6e5421d99beb46d7ab1500c1799",
 "sha1": "9e6414bf28a2c98fbd13172817db80380c5eeb6a"
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "hash"
]
],
 "archivers": []
 },
 "extracted_from": null,
 "extracted_by": null
 }
],
 "request_meta": {
 "archive_payloads": true,
 "source": null,
 "extra_data": {}
 },
 "errors": {},
 "decorators": {},
 "scan_id": "5699d5ac-df3b-4ba1-bb38-296813d14d19"
}

Great, now we’ve generated the needed hashes; but stoQ allows us to do way more
than just generate hashes. Let’s also tell stoQ to use the peinfo plugin.
First, let’s make sure the plugin is installed:

$ stoq install --github stoq:peinfo

Ok, now let’s scan the payload again, but this time we will use both plugins:

$ stoq scan /tmp/bad.exe -s hash peinfo
{
 "time": "...",
 "results": [
 {
 "payload_id": "38cb070d-c9e8-48be-84d9-6ee612489fe8",
 "size": 507904,
 "payload_meta": {
 "should_archive": true,
 "extra_data": {
 "filename": "bad.exe"
 },
 "dispatch_to": []
 },
 "workers": {
 "hash": {
 "sha256": "47c6e9b402324ea6c54dd95ad3fdf4b48b18775053b105e241a371a3731488c0",
 "md5": "16d9f6e5421d99beb46d7ab1500c1799",
 "sha1": "9e6414bf28a2c98fbd13172817db80380c5eeb6a"
 }
 "peinfo": {
 "imphash": "6238d5d3f08e2b63c437c2ba9e1f7151",
 "compile_time": "2013-04-20 10:50:10",
 "packer": null,
 "is_packed": false,
 "is_exe": true,
 "is_dll": false,
 "is_driver": false,
 "is_valid": null,
 "is_suspicious": null,
 "machine_type": "IMAGE_FILE_MACHINE_I386",
 "entrypoint": "0x32dc0",
 "section_count": 5,
 [...TRUNCATED...]
 }
 }
 "archivers": {},
 "plugins_run": {
 "workers": [
 [
 "hash",
 "peinfo"
]
],
 "archivers": []
 },
 "extracted_from": null,
 "extracted_by": null
 }
],
 "request_meta": {
 "archive_payloads": true,
 "source": null,
 "extra_data": {}
 },
 "errors": {},
 "decorators": {},
 "scan_id": "43f3210b-b4ce-41e5-b39a-5fb8dbbc45ac"
}

Now, you’ve run the payload with two different plugins simply by adding it to your command
line. As you use stoQ, you will see the power this affords you. This is especially true
when you start delving into some of the more advanced use cases. There are quite a few other
command line options, we’ve only just scratched the surface. For more command line options
available in scan mode, just run:

$ stoq scan -h

Run Mode

Run mode is similar to scan mode, but is meant for handling multiple payloads or
for long running tasks. This mode requires the use of a provider plugin.

For this example, we will monitor a directory for new files. When new files are created,
the plugin will detect this and send the payload to stoQ for scanning. Chances are we won’t
want the results to simply be displayed to the console, so we will also save the results to
disk.

First, let’s make sure the required plugins are installed. Let’s start with the dirmon
plugin. This plugin monitors a directory for newly created files:

$ stoq install --github stoq:dirmon

Now, time to install the filedir plugin. This plugin will save the results to disk:

$ stoq install --github stoq:filedir

We’ll monitor the directory /tmp/monitor for this example and save our results to
/tmp/results. Let’s create these directories:

$ mkdir /tmp/monitor /tmp/results

Since we already have the hash and peinfo plugins installed from the scan mode
example above, let’s use them for scanning the payloads.:

$ stoq run -P dirmon -C filedir -a hash peinfo \
 --plugin-opts dirmon:source_dir=/tmp/monitor \
 filedir:results_dir=/tmp/results

Now, let’s copy bad.exe into the monitor directory:

$ cp /tmp/bad.exe /tmp/monitor

Ok, stoQ should have detected bad.exe was created in /tmp/monitor and then scan the
content with the hash and peinfo plugins, then save the results to /tmp/results.
Let’s take a look:

$ ls /tmp/results/
1f168f68-1c19-46f9-9427-585345a6fe24

Great! We have successfully monitored a directory for new files, scanned them with two
plugins, and then saved the results to disk. Again, we’ve only scratched the surface as
to what stoQ can do. For more command line options in run mode, simply run:

$ stoq run -h

Plugin configuration

Plugin configurations may be defined in several ways, see plugin configuration.

RequestMeta Options

RequestMeta options sets metadata associated with the initial request stoQ receives. This is
useful when certain metadata, such as the source name of the payload, must be saved alongside
the results of the scan.

There are two command line options avaiable for RequestMeta.

	--request-source

	--request-extra

To set --request-source simply add the argument to the stoq command:

$ stoq scan [...] --request-source my_mail
{
 "results": {
 {
 [...]
 "payload_id": "27774a9a-5a03-4d59-b51b-37583683b666",
 [...]
 }
 }
 "request_meta": {
 "archive_payloads": true,
 "source": "my_mail",
 "extra_data": {}
 },
 "errors": {},
 "time": "...",
 "decorators": {},
 "scan_id": "e107f362-0b40-455e-bfef-da7c606637ca"
}

Additionally, extra data may be added to RequestMeta by using the --request-extra command
line argument. This option requires key/value pairs separated by an =:

$ stoq scan [...] --request-source my_mail --request-extra server=mail-server-01 postfix=true
{
 "results": {
 {
 [...]
 "payload_id": "27774a9a-5a03-4d59-b51b-37583683b666",
 [...]
 }
 }
 "request_meta": {
 "archive_payloads": true,
 "source": "my_mail",
 "extra_data": {
 "server": "mail-server-01",
 "postfix": true
 }
 },
 "errors": {},
 "time": "...",
 "decorators": {},
 "scan_id": "e107f362-0b40-455e-bfef-da7c606637ca"
}

Additionally, RequestMeta may be defined when scanning a payload using a Stoq object:

>>> import asyncio
>>> from stoq import Stoq, RequestMeta
>>> s = Stoq()
>>> loop = asyncio.get_event_loop()
>>> request_meta = RequestMeta(source='my_mail', extra_data={'server': 'mail-server-01', 'postfix': True})
>>> results = loop.run_until_complete(
... s.scan(b'this is a test payload', request_meta=request_meta)
...)

Development

	Core
	Overview

	Framework
	Individual Scan

	Using Providers

	Manual Interaction
	Instantiating stoQ

	Loading plugins

	Instantiate Payload Object

	Scan payload
	From raw bytes

	From Payload object

	Save Results

	Split Results

	Reconstructing Subresponse Results

	Multiple Plugin directories

	API

	Exceptions

	Plugins
	Overview

	Configuration
	Command Line

	Instantiation

	stoq.cfg

	Plugin .stoq configuration file

	Multiclass Plugins

	Plugin Logging

	Errors

	Classes
	Archiver Plugins
	Overview

	Writing a plugin

	API

	Response

	Connector Plugins
	Overview

	Writing a plugin

	API

	Decorator Plugins
	Overview

	Writing a plugin

	API

	Response

	Dispatcher Plugins
	Overview

	Writing a plugin

	API

	Response

	Provider Plugins
	Overview

	Writing a plugin

	API

	Worker Plugins
	Overview

	Writing a plugin

	API

	Response

	Upgrading Plugins
	v2 to v3
	__init__
	v2

	v3

	ArchiverPlugin
	v2

	v3

	ConnectorPlugin
	v2

	v3

	DecoratorPlugin
	v2

	v3

	DispatcherPlugin
	v2

	v3

	ProviderPlugin
	v2

	v3

	WorkerPlugin
	v2

	v3

	Packaging Plugins
	setup.py

	MANIFEST.in

	requirements.txt

	plugin subdirectory

	Examples

Core

Overview

stoQ is an extremely flexible framework. In this section we will go over some of
the most advanced uses and show examples of how it can be used as a framework.

Framework

stoQ is much more than simply a command to be run. First and foremost, stoQ is a
framework. The command stoq is simply a means of interacting with the framework.
For more detailed and robust information on APIs available for stoQ, please check
out the plugin documentation.

Stoq is the primary class for interacting with stoQ and its plugins.
All arguments, except for plugins to be used, must be defined upon instantiation.
Plugins can be loaded at any time. However, to ensure consistent behavior, it is
recommended that all required plugins be loaded upon instantiation.

For these examples, it is assumed the below plugins have been installed in
$CWD/plugins:

	dirmon

	exif

	filedir

	hash

	yara

Individual Scan

Individual scans are useful for scanning single payloads at a time. The user is
responsible for ensuring a payload is passed to the Stoq class.

Note

Provider plugins are ignored when conducting an individual scan.

	First, import the required class:

>>> import asyncio
>>> from stoq import Stoq, RequestMeta

	We will now define the plugins we want to use. In this case, we will be
loading the hash, and exif plugins:

>>> workers = ['hash', 'exif']

	Now that we have our environment defined, lets instantiate the Stoq class:

>>> s = Stoq(always_dispatch=workers)

	We can now load a payload, and scan it individually with stoQ:

>>> src = '/tmp/bad.exe'
>>> loop = asyncio.get_event_loop()
>>> with open(src, 'rb') as src_payload:
... meta = RequestMeta(extra_data={'filename': src})
... results = loop.run_until_complete(s.scan(
... content=src_payload.read(),
... request_meta=meta))
>>> print(results)
... {
... "time": "...",
... "results": [
... {
... "payload_id": "...",
... "size": 507904,
... "payload_meta": {
... "should_archive": true,
... "extra_data": {
... "filename": "/tmp/bad.exe"
... },
... "dispatch_to": []
... },
... "workers": {
... "hash": {
... [...]

Using Providers

Using stoQ with providers allows for the scanning of multiple payloads from
multiple sources. This method will instantiate a Queue which payloads or requests
are published to for scanning by stoQ. Additionally, payloads may be
retrieved from multiple disparate data sources using Archiver plugins.

	First, import the required class:

>>> import asyncio
>>> from stoq import Stoq

	We will now define the plugins we want to use. In this case, we will be
loading the dirmon, filedir, hash, and exif plugins. We
will also set the base_dir to a specific directory. Additionally,
we will also set some plugin options to ensure the plugins are
operating the way we’d like them:

>>> always_dispatch = ['hash']
>>> providers = ['dirmon']
>>> connectors = ['filedir']
>>> dispatchers = ['yara']
>>> plugin_opts = {
... 'dirmon': {'source_dir': '/tmp/datadump'},
... 'filedir': {'results_dir': '/tmp/stoq-results'}
... }
>>> base_dir = '/usr/local/stoq'
>>> plugin_dirs = ['/opt/plugins']

Note

Any plugin options available in the plugin’s .stoq configuration
file can be set via the plugin_opts argument.

3. Now that we have our environment defined, lets instantiate the Stoq class,
and run:

>>> s = Stoq(
... base_dir=base_dir,
... plugin_dir_list=plugin_dirs,
... dispatchers=dispatchers,
... providers=providers,
... connectors=connectors,
... plugins_opts=plugins_opts,
... always_dispatch=always_dispatch
...)
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(s.run())

	A few things are happening here:
	
	The /tmp/datadump directory is being monitored for newly created files

	Each file is opened, and the payload is loaded into Stoq asynchronously

	The payload is scanned with the yara dispatcher plugin

	The yara dispatcher plugin returns a list of plugins that the payload should
be scanned with

	The plugins identified by the yara dispatcher are loaded, and the payload is
sent to them

	Each payload will always be sent to the hash plugin because it was defined
in always_dispatch

	The results from all plugins are collected, and sent to the filedir
connector plugin

	The filedir plugin saves each result to disk in /tmp/stoq-results

Manual Interaction

Stoq may also be interacted with manually, rather than relying on the normal workflow.
In this section, we will touch on how this can be done.

Instantiating stoQ

Let’s start by simply instantiating Stoq with no options. There are several arguments
available when instantiating Stoq, please refer to the plugin documentation
for more information and options available.:

>>> from stoq import Stoq
>>> s = Stoq()

Loading plugins

stoQ plugins can be loaded using a simple helper function. The framework will
automatically detect the type of plugin is it based on the class of the plugin.
There is no need to define the plugin type, stoQ will handle that once it is loaded.:

>>> plugin = s.load_plugin('yara')

Instantiate Payload Object

In order to scan a payload, a Payload object must first be instantiated. The
Payload object houses all information related to a payload, to include the
content of the payload and metadata (i.e., size, originating plugin information,
dispatch metadata, among others) pertaining to the payload. Optionally, a Payload
object can be instantiated with a PayloadMeta object to ensure the originating
metadata (i.e., filename, source path, etc…) is also made available:

>>> import os
>>> import asyncio
>>> from stoq.data_classes import PayloadMeta, Payload
>>> filename = '/tmp/test_file.exe'
>>> with open(filename, 'rb') as src:
... meta = PayloadMeta(
... extra_data={
... 'filename': os.path.basename(filename),
... 'source_dir': os.path.dirname(filename),
... }
...)
>>> payload = Payload(src.read(), meta)

Scan payload

There are two helper functions available for scanning a payload. If a dispatcher
plugin is not being used, then a worker plugin must be defined by passing the
add_start_dispatch argument. This tells stoQ to send the Payload object
to the specified worker plugins.

From raw bytes

If a Payload object has not been created yet, the content of the raw payload can
simply be passed to the Stoq.scan function. A Payload object will automatically
be created.:

>>> loop = asyncio.get_event_loop()
>>> start_dispatch = ['yara']
>>> results = loop.run_until_complete(
... s.scan('raw bytes', add_start_dispatch=start_dispatch)
...)

From Payload object

If a Payload object has already been instantiated, as detailed above, the
scan_request function may be called. First, a new Request object must
be instantiated with the Payload object that we previously created:

>>> import asyncio
>>> from stoq import Payload, Request, RequestMeta
>>> start_dispatch = ['yara']
>>> loop = asyncio.get_event_loop()
>>> payload = Payload(b'content to scan')
>>> request = Request(payloads=[payload], request_meta=RequestMeta())
>>> results = loop.run_until_complete(
... s.scan_request(request, add_start_dispatch=start_dispatch)
...)

Save Results

Finally, results may be saved using the desired Connector plugin. stoQ stores
results from the framework as a StoqResponse object. The results will be saved
to all connector plugins that have been loaded. In this example, we will only load
the filedir plugin which will save the results to a specified directory.:

>>> connector = s.load_plugin('filedir')
>>> loop.run_until_complete(connector.save(results))

Split Results

In some cases it may be required to split results out individually. For example, when
saving results to different indexes depending on plugin name, such as with ElasticSearch or Splunk.

>>> results = loop.run_until_complete(s.scan(payload))
>>> split_results = results.split()

Reconstructing Subresponse Results

stoQ can produce complex results depending on the recursion depth and extracted payload objects.
In order to help handle complex results and limit redundant processing of payloads when using
stoQ as a framework, a method exists that will allow for iterating over each result as if it
were the original root object. This is especially useful when handling compressed archives, such
as zip or apk files that may have multiple levels of archived content. Additionally, the
defined decorators will be run against each newly constructed StoqResponse and added to the
results.

>>> await for result in s.reconstruct_all_subresponses(results):
... print(result)

Below is a simple flow diagram of the iterated results when being reconstructed.

[image: ../_images/reconstruct-results.png]

Multiple Plugin directories

When instantiating Stoq, multiple plugins directories may be defined. For more
information on default paths, please refer to the getting started documentation:

>>> from stoq import Stoq
>>> plugin_directories = ['/usr/local/stoq/plugins', '/home/.stoq/plugins']
>>> s = Stoq(plugin_dir_list=plugin_directories)

API

	
class stoq.core.Stoq(base_dir=None, config_file=None, log_dir=<object object>, log_level=None, plugin_dir_list=None, plugin_opts=None, providers=None, provider_consumers=None, source_archivers=None, dest_archivers=None, connectors=None, dispatchers=None, decorators=None, always_dispatch=None, max_queue=None, max_recursion=None, max_required_worker_depth=None)[source]

	Core Stoq Class

	Parameters

	
	base_dir (Optional[str]) – Base directory for stoQ

	config_file (Optional[str]) – stoQ Configuration file

	log_dir (object) – Path to log directory

	log_level (Optional[str]) – Log level for logging events

	plugin_dir_list (Optional[List[str]]) – Paths to search for stoQ plugins

	plugin_opts (Optional[Dict[str, Dict]]) – Plugin specific options that are passed once a plugin is loaded

	providers (Optional[List[str]]) – Provider plugins to be loaded and run for sending payloads to scan

	source_archivers (Optional[List[str]]) – Archiver plugins to be used for loading payloads for analysis

	dest_archiver – Archiver plugins to be used for archiving payloads and extracted payloads

	connectors (Optional[List[str]]) – Connectors to be loaded and run for saving results

	dispatchers (Optional[List[str]]) – Dispatcher plugins to be used

	decorators (Optional[List[str]]) – Decorators to be used

	always_dispatch (Optional[List[str]]) – Plugins to always send payloads to, no matter what

	provider_consumers (Optional[int]) – Number of provider consumers to instaniate

	max_queue (Optional[int]) – Max Queue size for Providers plugins

	max_recursion (Optional[int]) – Maximum level of recursion into a payload and extracted payloads

	max_required_worker_depth (Optional[int]) – Maximum depth for required worker plugins dependencies

	
reconstruct_all_subresponses(stoq_response)[source]

	Generate a new StoqResponse object for each Payload within
the Request

	Return type

	AsyncGenerator[StoqResponse, None]

	
async run(request_meta=None, add_start_dispatch=None)[source]

	Run stoQ using a provider plugin to scan multiple files until exhaustion

	Parameters

	
	request_meta (Optional[RequestMeta]) – Metadata pertaining to the originating request

	add_start_dispatch (Optional[List[str]]) – Force first round of scanning to use specified plugins

	Return type

	None

	
async scan(content, payload_meta=None, request_meta=None, add_start_dispatch=None, ratelimit=None)[source]

	Wrapper for scan_request that creates a Payload object from bytes

	Parameters

	
	content (bytes) – Raw bytes to be scanned

	payload_meta (Optional[PayloadMeta]) – Metadata pertaining to originating source

	request_meta (Optional[RequestMeta]) – Metadata pertaining to the originating request

	add_start_dispatch (Optional[List[str]]) – Force first round of scanning to use specified plugins

	ratelimit (Optional[str]) – Rate limit calls to scan

	Return type

	StoqResponse

	
async scan_request(request, add_start_dispatch=None)[source]

	Scan an individual payload

	Parameters

	
	request (Request) – Request object of payload(s) to be scanned

	add_start_dispatch (Optional[List[str]]) – Force first round of scanning to use specified plugins

	Return type

	StoqResponse

Exceptions

	
exception stoq.exceptions.StoqException[source]

	

	
exception stoq.exceptions.StoqPluginNotFound[source]

	

	
exception stoq.exceptions.StoqPluginException[source]

	

Plugins

Overview

stoQ is a highly flexible framework because of its ability to leverage plugins for each
layer of operations. One of the biggest benefits to this approach is that it ensures the
user is able to quickly and easily pivot to and from different technologies in their stack,
without having to drastically alter workflow.

For a full listing of all publicly available plugins, check out the stoQ public plugins [https://github.com/PUNCH-Cyber/stoq-plugins-public] repository.

Configuration

Plugins may be provided configuration options in one of four ways. In order of precendece:

	From the command line

	Upon instantiation of Stoq()

	Defined in stoq.cfg

	Defined in the plugin’s .stoq configuration file

Command Line

When running stoq from the command line, simply add --plugin-opts to your arguments
followed by the desired plugin options. The syntax for plugin options is:

plugin_name:option=value

For example, if we want to tell the plugin dirmon to monitor the directory /tmp/monitor
for new files by setting the option source_dir, the syntax would be:

dirmon:source_dir=/tmp/monitor

Instantiation

When using stoQ as a framework, plugin options may be defined when instantiating Stoq using the plugin_opts
argument:

>>> from stoq import Stoq
>>> plugin_options = {'dirmon': {'source_dir': '/tmp/monitor'}}
>>> s = Stoq(plugin_opts=plugin_options)

stoq.cfg

The recommended location for storing static plugin configuration options is in stoq.cfg. The reason for this
if all plugin options defined in the plugin’s .stoq file will be overwritten when the plugin is upgraded.

To define plugin options in stoq.cfg simply add a section header of the plugin name, then define the plugin options.
For example, to define the plugin option source_dir for the dirmon plugin, the below can be added to stoq.cfg:

[dirmon]
source_dir = /tmp/monitor

Plugin .stoq configuration file

Each plugin must have a .stoq configuration file. The configuration file resides in
the same directory as the plugin module. The plugin’s configuration file allows for
configuring a plugin with default or static settings. The configuration file is a standard
YAML file and is parsed using the configparser module. The following is an example
plugin configuration file with all required fields:

[Core]
Name = example_plugin
Module = example_plugin

[Documentation]
Author = PUNCH Cyber
Version = 0.1
Website = https://github.com/PUNCH-Cyber/stoq-plugins-public
Description = Example stoQ Plugin

	
	Core
	
	Name: The plugin name that stoQ will use when calling the plugin. This must be unique.

	Module: The python module that contains the plugin (without the .py extension).

	
	Documentation
	
	Author: Author of the plugin

	Version: Plugin version

	Website: Website where the plugin can be found

	Description: Description of the plugins utility

Additionally, some optional settings may be defined:

[options]
min_stoq_version = 3.0.0

	
	options
	
	min_stoq_version: Minimum version of stoQ required to work properly. If the version of stoQ is less than the version defined, a warning will be raised.

Note

Plugin options must be under the [options] section header to be accessible via the other plugin configuration options.

Warning

Plugin configuration options may be overwritten when a plugin is upgraded. Upgrading plugins is a destructive
operation. This will overwrite/remove all data within the plugins directory, to include the plugin configuration
file. It is highly recommended that the plugin directory be backed up regularly to ensure important information
is not lost, or plugin configuration options be defined in stoq.cfg.

Multiclass Plugins

Plugins that are of more than one plugin class are called Multiclass Plugins.
Multiclass plugins help to simplify and centralize plugin code. Development
is nearly identical to creating a regular plugin.In order to create a
Multiclass plugin, the plugin must be a subclass of one or more plugin class.

In this example, we will create a Multiclass plugin that is a worker as well
as a dispatcher plugin. We simply need to subclass our plugin class with
WorkerPlugin and DispatcherPlugin and ensure the scan (required
for worker plugins) and get_dispatches (required for dispatcher plugins)
methods exist.:

from typing import Optional
from stoq import Payload, Request, WorkerResponse
from stoq.plugins import DispatcherPlugin, WorkerPlugin

class MultiClassPlugin(WorkerPlugin, DispatcherPlugin):
 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 # do worker plugin stuff here
 return

 async def get_dispatches(
 self, payload: Payload, request: Request
) -> Optional[DispatcherResponse]:
 # do dispatcher plugin stuff here
 return

Plugin Logging

Upon instantiation, plugins are provided a Logger object within the plugin class
named self.log. This is just a standard Python logging object that supports the
log levels debug, info, warning, error, and critical.:

from typing import Optional
from stoq.plugins import WorkerPlugin
from stoq import Payload, Request, WorkerResponse

class LoggingPlugin(WorkerPlugin):
 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 self.log.info('Scanning payload now')

Errors

Errors from plugins must be handled with the Error class. This helps to ensure a
consistent and standardized error message handling across the framework. All plugin
classes are capable of handling errors, except for the ConnectorPlugin class. The
following is an example of adding a error to a WorkerResponse.:

from typing import Optional
from stoq.plugins import WorkerPlugin
from stoq import Error, Payload, Request, WorkerResponse

class ErrorPlugin(WorkerPlugin):
 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 errors: List[Error] = []
 errors.append(
 Error(
 error='This is an error message that will be in StoqResponse',
 plugin_name=self.plugin_name,
 payload_id=payload.results.payload_id
)
)
 return WorkerResponse(errors=errors)

Classes

	Archiver Plugins
	Overview
	destination

	source

	Writing a plugin
	Example

	API

	Response

	Connector Plugins
	Overview

	Writing a plugin
	Example

	API

	Decorator Plugins
	Overview

	Writing a plugin
	Example

	API

	Response

	Dispatcher Plugins
	Overview

	Writing a plugin
	Example

	API

	Response

	Provider Plugins
	Overview

	Writing a plugin
	Example

	API

	Worker Plugins
	Overview

	Writing a plugin
	Example

	Required Workers

	Extracted Payloads

	Dispatch To

	Should Scan

	API

	Response

Archiver Plugins

Overview

Archiver plugins are used for retrieving or saving scanned payloads. A payload
can be anything from the initial payload scanned, or extracted payloads from
previous scans. There are two types of archivers, source
and destination.

destination

Archiver plugins used as a destination useful for saving payloads, be it the original
scanned payload or any extracted payloads. Multiple destination archivers can be
defined, allowing for a payload to be saved in either a single or multiple locations.
The results from this plugin method may be used to subsequently load the payload again.

Destination archiver plugins can be defined multiple ways. In these examples, we will
use the filedir archiver plugin.

From stoq.cfg:

[core]
dest_archivers = filedir

Note

Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -A filedir [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> dest_archivers = ['filedir']
>>> s = Stoq(dest_archivers=dest_archivers)

source

Archiver plugins used as a source retrieve payloads for scanning. This is useful
in several use cases, such as when using a provider plugin that isn’t able to pass
a payload to stoQ. For example, if the provider plugin being used leverages a
queueing system, such as RabbitMQ, there may be problems placing multiple payloads
onto a queue as it is inefficient, prone to failure, and does not scale well. With
archiver plugins as a source, the queuing system can be leveraged by sending a
message with a payload location, and the archiver plugin can then retrieve the
payload for scanning. The ArchiverResponse results returned from
ArchiverPlugin.archive() is used to load the payload.

Source archiver plugins can be defined multiple ways. In these examples, we will
use the filedir archiver plugin.

From stoq.cfg:

[core]
source_archivers = filedir

Note

Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -S filedir [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> source_archivers = ['filedir']
>>> s = Stoq(source_archivers=source_archivers)

Writing a plugin

Unlike most other stoQ plugins, archiver plugins have two core methods, of which at
least one of the below is required.

	archive

	get

The archive method is used to archive payloads that are passed to stoQ or extracted
from other plugins. In order for a payload to be archived, that attribute should_archive
must be set to True in the payloads PayloadMeta object. If set to False, the
payload will not be archived.

An archiver plugin must be a subclass of the ArchiverPlugin class.

As with any plugin, a configuration file must also exist
and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import ArchiverPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import ArchiverResponse, Payload, Request, PayloadMeta

class ExampleArchiver(ArchiverPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.archive_path = config.get(
 'options', 'archive_path', fallback='/tmp/archive_payload')

 async def archive(
 self, payload: Payload, request: Request
) -> Optional[ArchiverResponse]:
 with open(f'{self.archive_path}', 'wb) as out:
 out.write(payload.content)
 ar = ArchiverResponse({'path': f'{self.archive_path}'})
 return ar

 async def get(self, task: ArchiverResponse) -> Optional[Payload]:
 with open(task.results['path'], 'rb') as infile:
 return Payload(
 infile.read(),
 PayloadMeta(
 extra_data={'path': task.results['path']}))

Note

ArchiverPlugin.archive() returns an ArchiverResponse object, which contains
metadata that is later used by ArchiverPlugin.get() to load the payload.

API

	
class stoq.plugins.archiver.ArchiverPlugin(config)[source]

	
	
async archive(payload, request)[source]

	Archive payload

	Parameters

	
	payload (Payload) – Payload object to archive

	request (Request) – Originating Request object

	Return type

	Optional[ArchiverResponse]

	Returns

	ArchiverResponse object. Results are used to retrieve payload.

>>> import asyncio
>>> from stoq import Stoq, Payload
>>> payload = Payload(b'this is going to be saved')
>>> s = Stoq()
>>> loop = asyncio.get_event_loop()
>>> archiver = s.load_plugin('filedir')
>>> loop.run_until_complete(archiver.archive(payload))
... {'path': '/tmp/bad.exe'}

	
async get(task)[source]

	Retrieve payload for processing

	Parameters

	task (ArchiverResponse) – Task to be processed to load payload. Must contain ArchiverResponse
results from ArchiverPlugin.archive()

	Return type

	Optional[Payload]

	Returns

	Payload object for scanning

>>> import asyncio
>>> from stoq import Stoq, ArchiverResponse
>>> s = Stoq()
>>> loop = asyncio.get_event_loop()
>>> archiver = s.load_plugin('filedir')
>>> task = ArchiverResponse(results={'path': '/tmp/bad.exe'})
>>> payload = loop.run_until_complete(archiver.get(task))

Response

	
class stoq.data_classes.ArchiverResponse(results=None, errors=None)[source]

	Object containing response from archiver destination plugins

	Parameters

	
	results (Optional[Dict]) – Results from archiver plugin

	errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import ArchiverResponse
>>> results = {'file_id': '12345'}
>>> archiver_response = ArchiverResponse(results=results)

Connector Plugins

Overview

The last plugin class is the Connector plugin. This plugin class allows for the
saving or passing off of the final result. Once all other plugins have completed
their tasks, the final result is sent to the loaded connector plugins for handling.
For example, a connector plugin may save results to disk, ElasticSearch, or even
pass them off to a queueing system such as RabbitMQ.

Connector plugins can be defined multiple ways. In these examples, we will use the
filedir connector plugin, allowing results to be saved to disk.

From stoq.cfg:

[core]
connectors = filedir

Note

Multiple plugins can be defined separated by a comma.

From the command line:

$ stoq run -C filedir [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> connectors = ['filedir']
>>> s = Stoq(connectors=connectors, [...])

Writing a plugin

A connector plugin must be a subclass of the ConnectorPlugin class.

As with any plugin, a configuration file must also exist
and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import ConnectorPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import StoqResponse

class ExampleConnector(ConnectorPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.output_file = config.get(
 'options', 'output_file', fallback='/tmp/stoqresult.txt')

 async def save(self, response: StoqResponse) -> None:
 with open(f'{self.output_file}', 'w') as result:
 result.write(response)

API

	
class stoq.plugins.connector.ConnectorPlugin(config)[source]

	
	
abstract async save(response)[source]

	
	Return type

	None

Decorator Plugins

Overview

Decorator plugins are the last plugins run just before saving results. This
plugin class allows for the analysis of all results from each plugin, the
original payload, and any extracted payloads. Multiple decorator plugins can
be loaded, but each plugin is only passed the results once. Decorator plugins
are extremely useful when post-processing is required of the collective
results from the entire stoQ workflow.

Decorator plugins can be defined multiple ways. In these examples, we will use
the test_decorator decorator plugin.

From stoq.cfg:

[core]
decorators = test_decorator

Note

Multiple plugins can be defined separated by a comma.

From the command line:

$ stoq run -D yara [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> decorators = ['test_decorator']
>>> s = Stoq(decorators=decorators, [...])

Writing a plugin

A decorator plugin must be a subclass of the DecoratorPlugin class. Results
from a decorator are appended to the final StoqResponse object.

As with any plugin, a configuration file must also exist
and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import DecoratorPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import StoqResponse, DecoratorResponse

class ExampleDecorator(DecoratorPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.msg = config.get('options', 'msg', fallback='do_more msg')

 async def decorate(self, response: StoqResponse) -> Optional[DecoratorResponse]:
 do_more = False
 if 'yara' in response.results[0].plugins_run:
 do_more = True
 dr = DecoratorResponse({'do_more': do_more, 'msg': self.msg})
 return dr

API

	
class stoq.plugins.decorator.DecoratorPlugin(config)[source]

	
	
abstract async decorate(response)[source]

	
	Return type

	Optional[DecoratorResponse]

Response

	
class stoq.data_classes.DecoratorResponse(results=None, errors=None)[source]

	
Object containing response from decorator plugins

	Parameters

	
	results (Optional[Dict]) – Results from decorator plugin

	errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import DecoratorResponse
>>> results = {'decorator_key': 'decorator_value'}
>>> errors = ['This plugin failed for a reason']
>>> response = DecoratorResponse(results=results, errors=errors)

Dispatcher Plugins

Overview

Dispatcher plugins allow for dynamic routing and loading of worker plugins. These
plugins are extremely powerful in that they allow for an extremely flexible scanning
flow based on characteristics of the payload itself. For instance, routing a payload
to a worker plugin for scanning can be done by yara signatures, TRiD results, simple
regex matching, or just about anything else. Each loaded dispatcher plugin is run
once per payload.

Dispatcher plugins can be defined multiple ways. In these examples, we will use the
yara dispatcher plugin.

From stoq.cfg:

[core]
dispatchers = yara

Note

Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -R yara [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> dispatchers = ['yara']
>>> s = Stoq(dispatchers=dispatchers, [...])

Now, let’s write a simple yara rule to pass a payload to the pecarve plugin if a
DOS stub is found:

rule exe_file
{
 meta:
 plugin = "pecarve"
 save = "True"
 strings:
 $MZ = "MZ"
 $ZM = "ZM"
 $dos_stub = "This program cannot be run in DOS mode"
 $win32_stub = "This program must be run under Win32"
 condition:
 ($MZ or $ZM) and ($dos_stub or $win32_stub)
}

In this case, if this yara signature hits on a payload, the payload will be passed to
the pecarve plugin, which will then extract the PE file as a payload, and send it
to stoQ for continued scanning. Additionally, because save = "True", the extracted
payload will also be saved if a Destination Archiver plugin is
defined.

Writing a plugin

A dispatcher plugin must be a subclass of the DispatcherPlugin class.

As with any plugin, a configuration file must also exist
and be properly configured.

Example

from typing import Dict, Optional

from stoq.plugins import DispatcherPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import Payload, DispatcherResponse, Request

class ExampleDispatcher(DispatcherPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.msg = config.get('options', 'msg', fallback='Useful content here')

 async def get_dispatches(
 self, payload: Payload, request: Request
) -> Optional[DispatcherResponse]:
 dr = DispatcherResponse()
 dr.meta['example_key'] = 'Useful metadata info'
 dr.meta['msg'] = self.msg
 return dr

API

	
class stoq.plugins.dispatcher.DispatcherPlugin(config)[source]

	
	
abstract async get_dispatches(payload, request)[source]

	
	Return type

	Optional[DispatcherResponse]

Response

	
class stoq.data_classes.DispatcherResponse(plugin_names=None, meta=None, errors=None)[source]

	Object containing response from dispatcher plugins

	Parameters

	
	plugins_names – Plugins to send payload to for scanning

	meta (Optional[Dict]) – Metadata pertaining to dispatching results

	errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import DispatcherResponse
>>> plugins = ['yara', 'exif']
>>> meta = {'hit': 'exe_file'}
>>> dispatcher = DispatcherResponse(plugin_names=plugins, meta=meta)

Provider Plugins

Overview

Provider plugins are designed for passing multiple payloads, or locations of payloads,
to stoQ. They allow for multiple payloads to be run against stoQ until the source
is exhausted. As such, they are useful for monitoring directories for new files,
subscribing to a queue (i.e., RabbitMQ, Google PubSub, ZeroMQ), or scanning entire
directories recursively. Multiple provider plugins can be provided allowing for even more
flexibility. Provider plugins may either send a payload to stoQ for scanning, or send a
message that an Archiver plugin is able to handle for loading of a
payload.

Note

Provider plugins are not available when using scan mode. This is due to
scan mode being designed for individual scans, not multiple payloads.

Provider plugins can be defined multiple ways. In these examples, we will use the
dirmon provider plugin.

From stoq.cfg:

[core]
providers = dirmon

Note

Multiple plugins can be defined separated by a comma

From the command line:

$ stoq run -P dirmon [...]

Note

Multiple plugins can be defined by simply adding the plugin name

Or, when instantiating the Stoq() class:

>>> import stoq
>>> providers = ['dirmon']
>>> s = Stoq(providers=providers, [...])

Writing a plugin

Provider plugins add Payload or Request objects to the stoQ queue, or a str.
If a Payload object is added, stoQ will begin processing the payload. If a Request object
is added, stoQ will begin processing the request (which should contain at least one payload).
If a str is added, stoQ will pass it to Archiver plugins that were loaded when Stoq
was instantiated with the source_archivers argument.

A provider plugin must be a subclass of the ProviderPlugin class.

As with any plugin, a configuration file must also exist
and be properly configured.

If a Request object is added to the queue and has request_meta set, then the
request_meta passed to the Stoq run() method is ignored for this request.

Example

from asyncio import Queue
from typing import Dict, Optional

from stoq import Payload, PayloadMeta
from stoq.plugins import ProviderPlugin
from stoq.helpers import StoqConfigParser

class ExampleProvider(ProviderPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.meta = config.get('options', 'meta', fallback='This msg will always be')

 async def ingest(self, queue: Queue) -> None:
 payload_meta = PayloadMeta(extra_data={'msg': self.meta})
 await queue.put(Payload(b'This is a payload', payload_meta=payload_meta))

API

	
class stoq.plugins.provider.ProviderPlugin(config)[source]

	
	
abstract async ingest(queue)[source]

	
	Return type

	None

Worker Plugins

Overview

Worker plugins are the primary data producers within stoQ. These plugins
allow for tasks such as scanning payloads with yara, hashing payloads, and
even extracting indicators of compromise (IOC) from documents. Worker plugins
can be defined in all scanning modes. Additionally worker plugins can be
dynamically loaded using dispatching plugins. More information on dispatcher
plugins can be found in the dispatcher plugin section.

Worker plugins can be defined multiple ways. In these examples, we will use
the hash worker plugin.

From the command line, worker plugins can be defined two different ways,
depending on the use.

If only the original payload must be scanned, then --start-dispatch
or -s command line argument may be used.:

$ stoq scan -s hash [...]

However, if the original payload and all subsequent payloads must be scanned,
the --always-dispatch or -a command line argument may be used:

$ stoq scan -a hash [...]

Note

The difference between --start-dispatch and --always-dispatch
can be somewhat confusing. The primary difference between the two is
that if a worker plugin extracts any payloads for further scanning,
any extracted payloads will only be scanned by workers defined by
--always-dispatch. If --start-dispatch was used, the plugin
defined will not be used to scan any extracted payloads.

Or, when instantiating the Stoq() class:

>>> import stoq
>>> workers = ['yara']
>>> s = Stoq(always_dispatch=workers, [...])

Lastly, worker plugins can be defined by dispatcher plugins. As mentioned previously,
more information on them can be found in the dispatcher plugin section

Writing a plugin

A worker plugin must be a subclass of the WorkerPlugin class.

As with any plugin, a configuration file must also exist
and be properly configured.

Example

from typing import Dict, List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (
 Payload,
 Request,
 WorkerResponse,
)

class ExampleWorker(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.useful = config.getboolean('options', 'useful', fallback=False)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 response = {'worker_results': f'useful: {self.useful}'}
 return WorkerResponse(response)

Required Workers

required_workers is a configuration option specific to WorkerPlugin class.
The purpose of this option is to allow a user to define worker dependencies. For
example, WorkerA must be run after WorkerB because WorkerA requires the results
from WorkerB to run successfully. This configuration option may be set in the
.stoq configuration file for the WorkerPlugin, or within the __init__
function.

from typing import List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (
 Payload,
 Request,
 WorkerResponse,
)
class WorkerA(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.required_workers = config.getset(
 'options', 'required_workers', fallback=set('WorkerB')
)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 is_bad: bool = payload.results.workers['WorkerB']['is_bad']
 response = {'worker_results': f'is_bad: {is_bad}'}
 return WorkerResponse(response)

Extracted Payloads

Worker plugins may also extract payloads, and return them to Stoq for
further analysis. Each extracted payload that is returned will be inserted
into the same workflow as the original payload.

from typing import Dict, List, Optional

from stoq.plugins import WorkerPlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import (
 ExtractedPayload,
 Payload,
 PayloadMeta,
 RequestMeta,
 WorkerResponse,
)

class ExampleWorker(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.useful = config.getboolean('options', 'useful', fallback=False)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 extracted_payloads: List = []
 extracted_payloads.append(ExtractedPayload(b'Lorem ipsum'))
 response = {'worker_results': f'useful: {self.useful}'}
 return WorkerResponse(response, extracted=extracted_payloads)

Dispatch To

In some cases it may be useful for a worker plugin to dicate which plugins an extracted
payload is scanned with.

>>> meta = PayloadMeta(dispatch_to=['yara'])
>>> extracted_payload = ExtractedPayload(b'this is a payload with bad stuff', meta)

Should Scan

Likewise, there may be cases where an extracted payload should not be scanned by workers,
but should be added to the results or archived. Simply set PayloadMeta.should_scan to
False.

>>> meta = PayloadMeta(should_scan=False)
>>> extracted_payload = ExtractedPayload(b'this is a payload', meta)

API

	
class stoq.plugins.worker.WorkerPlugin(config)[source]

	
	
abstract async scan(payload, request)[source]

	
	Return type

	Optional[WorkerResponse]

Response

	
class stoq.data_classes.WorkerResponse(results=None, extracted=None, errors=None, dispatch_to=None)[source]

	Object containing response from worker plugins

	Parameters

	
	results (Optional[Dict]) – Results from worker scan

	extracted (Optional[List[ExtractedPayload]]) – ExtractedPayload objects of extracted payloads from scan

	errors (Optional[List[Error]]) – Errors that occurred

>>> from stoq import WorkerResponse, ExtractedPayload
>>> results = {'is_bad': True, 'filetype': 'executable'}
>>> extracted_payload = [ExtractedPayload(content=data, payload_meta=extracted_meta)]
>>> response = WorkerResponse(results=results, extracted=extracted_payload)

Upgrading Plugins

v2 to v3

With the release of stoQ v3, a few enhancements were introduced that requires v2 plugins
be slightly modified for use with v3. Some key changes include:

	Full asyncio support with all plugins

	The entire request state is passed to dispatchers, workers, and archivers. This
includes making all payloads, and their respective results, available to them.

	A Logger object is now available to all plugins upon instantiation

	Errors from plugins are no longer simply a list of strings, they are now a list
of Error objects

	Configuration parameters are passed to each plugin as a StoqConfigParser object
rather than a ConfigParser object

	DeepDispatcher plugins have been deprecated

__init__

All plugin classes are instantiated exactly the same way. If the plugin requires additional
configuration options, the __init__ function may be added to your plugin class.

Key Changes:

	from configparser import ConfigParser has been replaced with a helper function and
should be imported as from stoq.helpers import StoqConfigParser

	plugins_opts has been deprecated. All plugin options are now available within the
config argument. plugins_opts must be removed from the __init__ signature as
well as from super().__init__

v2

from typing import Dict, Optional
from configparser import ConfigParser

class MyPlugin(ConnectorPlugin):
 def __init__(self, config: ConfigParser, plugin_opts: Optional[Dict]) -> None:
 super().__init__(config, plugin_opts)

 if plugin_opts and 'my_setting' in plugin_opts:
 self.my_setting = plugin_opts['my_setting']
 elif config.has_option('options', 'my_setting'):
 self.my_setting = config.get('options', 'my_setting')
 else:
 self.my_setting = None

v3

from stoq.helpers import StoqConfigParser

class MyPlugin(ConnectorPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)

 self.my_setting = config.get('options', 'my_setting', fallback=None)

ArchiverPlugin

Key Updates:

	import of RequestMeta is replaced with Request

	The archive function signature accepts a Request object rather than RequestMeta

	def archive is an async function, and must be changed to async def archive

	def get is an async function, and must be changed to async def get

v2

from stoq.plugins import ArchiverPlugin
from stoq import Payload, RequestMeta, ArchiverResponse

class MyArchiver(ArchiverPlugin):
 def archive(
 self, payload: Payload, request_meta: RequestMeta
) -> ArchiverResponse
 return ArchiverResponse

 def get(self, task: ArchiverResponse) -> Payload:
 return Payload()

v3

from stoq.plugins import ArchiverPlugin
from stoq import Payload, RequestMeta, ArchiverResponse

class MyArchiver(ArchiverPlugin):
 async def archive(
 self, payload: Payload, request: Request
) -> ArchiverResponse
 return ArchiverResponse

 async def get(self, task: ArchiverResponse) -> Payload:
 return Payload()

ConnectorPlugin

Key Updates:

	def save is an async function, and must be changed to async def save

v2

from stoq.plugins import ConnectorPlugin
from stoq import StoqResponse

class MyConnector(ConnectorPlugin):
 def save(self, response: StoqResponse) -> None:
 print(f'saving: {response}')

v3

from stoq.plugins import ConnectorPlugin
from stoq import StoqResponse

class MyConnector(ConnectorPlugin):
 async def save(self, response: StoqResponse) -> None:
 print(f'saving: {response}')

DecoratorPlugin

Key Updates:

	def decorate is an async function, and must be changed to async def decorate

v2

from stoq.plugins import DecoratorPlugin
from stoq import StoqResponse, DecoratorResponse

class MyDecorator(DecoratorPlugin):
 def decorate(self, response: StoqResponse) -> DecoratorResponse:
 return DecoratorResponse()

v3

from stoq.plugins import DecoratorPlugin
from stoq import StoqResponse, DecoratorResponse

class MyDecorator(DecoratorPlugin):
 async def decorate(self, response: StoqResponse) -> DecoratorResponse:
 return DecoratorResponse()

DispatcherPlugin

Key Updates:

	import of RequestMeta is replaced with Request

	The get_dispatches function signature accepts a Request object rather than RequestMeta

	def get_dispatches is an async function, and must be changed to async def get_dispatches

v2

from stoq.plugins import DispatcherPlugin
from stoq import Payload, RequestMeta, DispatcherResponse

class MyDispatcher(DispatcherPlugin):
 def get_dispatches(
 self, payload: Payload, request_meta: RequestMeta
) -> DispatcherResponse:
 return DispatcherResponse()

v3

from stoq.plugins import DispatcherPlugin
from stoq import Payload, Request, DispatcherResponse

class MyDispatcher(DispatcherPlugin):
 async def get_dispatches(
 self, payload: Payload, request: Request
) -> DispatcherResponse:
 return DispatcherResponse()

ProviderPlugin

Key Updates:

	from queue import Queue is replaced with from asyncio import Queue

	def ingest is an async function, and must be changed to async def ingest

	When placing objects on the Queue, the call must be awaited, await queue.put()

v2

from queue import Queue
from stoq.plugins import ProviderPlugin
from stoq import Payload

class MyProvider(ProviderPlugin):
 def ingest(self, queue: Queue) -> None:
 queue.put(Payload(b'This is my payload'))

v3

from asyncio import Queue
from stoq.plugins import ProviderPlugin
from stoq import Payload

class MyProvider(ProviderPlugin):
 async def ingest(self, queue: Queue) -> None:
 await queue.put(Payload(b'This is my payload'))

WorkerPlugin

Key Updates:

	import of RequestMeta is replaced with Request

	The scan function signature accepts a Request object rather than RequestMeta

	def scan is an async function, and must be changed to async def scan

v2

from stoq.plugins import WorkerPlugin
from stoq import Payload, RequestMeta, WorkerResponse

class MyWorker(WorkerPlugin):
 def scan(self, payload: Payload, request_meta: RequestMeta) -> WorkerResponse:
 return WorkerResponse()

v3

from stoq.plugins import WorkerPlugin
from stoq import Payload, Request, WorkerResponse

class MyWorker(WorkerPlugin):
 async def scan(self, payload: Payload, request: Request) -> WorkerResponse:
 return WorkerResponse()

Packaging Plugins

stoQ has a built-in plugin installation and upgrade capability. stoQ plugins may
be packaged to allow for a simple and consistent installation process. Though packaging
plugins isn’t a necessity, it is highly recommended to do so for simplicity and reproducibility.

Let’s take a look at a basic directory structure for a stoQ plugin:

|-- example_plugin/
| `-- setup.py
| `-- MANIFEST.in
| `-- requirements.txt
| `-- example_plugin/
| `-- __init__.py
| `-- example_plugin.py
| `-- example_plugin.stoq

stoQ plugin packages leverage python’s packaging library, setuptools. When a plugin is installed,
pip is used for package management and installation. As such, all rules for both apply for stoQ
plugins.

setup.py

The setup.py file is a standard setuptools script. include_package_data should always be set to
True to ensure the plugin configuration file and any additional files are properly installed.

from setuptools import setup, find_packages
setup(
 name="example_plugin",
 version="3.0.0",
 author="Marcus LaFerrera (@mlaferrera)",
 url="https://github.com/PUNCH-Cyber/stoq-plugins-public",
 license="Apache License 2.0",
 description="Example stoQ plugin",
 packages=find_packages(),
 include_package_data=True,
)

MANIFEST.in

The manifest file ensure that the plugins .stoq configuration file, and any other required
files, are installed alongside the plugin. More information on the .stoq configuration file
can be found here.

include example_plugin/*.stoq

requirements.txt

If a requirements file exists, stoQ will install dependencies appropriately. They will not be installed
along side the plugin, but rather in python’s system path. This file is not required if no additional
dependencies need to be installed.

plugin subdirectory

The subdirectory above, example_plugin, is the primary plugin directory. This is the core location
for the stoQ plugin that will be installed into the stoQ plugin directory. The plugin module, along with
files identified in MANIFEST.in will be copied.

More information on writing a plugin can be found here.

Examples

There are plenty of examples for packaging plugin in stoQ’s public plugin repository [https://github.com/PUNCH-Cyber/stoq-plugins-public].

Frequently Asked Questions

	What is the difference between stoQ v2 and v3?

The basic workflow and concept between the two versions are nearly similar, but under the hood
a lot has changed. Version 2 of stoQ was a complete rewrite of v1, filled with lots of lessons learned,
optimizations, and best practices. Additionally, we made the decision to ensure a modern version
of python was used in order to leverage many of the added benefits and features.

stoQ v3 built upon v2, but added many additional features such as native AsyncIO support, streamlined
data flow, and passing the full request stte to each worker plugin. A full list of changes can be
found in the CHANGELOG [https://github.com/PUNCH-Cyber/stoq/blob/master/CHANGELOG.md].

	Are plugins from v2 compatiable with v3?

Unfortunately, no. However, porting plugins to v3 is very simple. You can read more about that
here.

	Is v1 or v2 of stoQ still available?

Absolutely, though they are no longer maintained (minus major bug fixes or security issues) in favor of v3.

	Why should I use stoQ?

Because your time is valuable and there are better things to do with it than run the same tools over and over again. stoQ allows you to automate most of the mundane tasks analysts do on a daily basis. It also allows you to do this scanning at scale, against a few to hundreds of millions of payloads daily.

	How long has stoQ been around?

We started developing stoQ back in 2011 to help automate and streamline many of our day to day tasks. In 2015, after several years of developing and real world use in large enterprise environments, we decided to open source the entire framework, along with many plugins.

	Why is everything a plugin?

Flexibility. When we started building stoQ we didn’t want to have to reengineer it if we switched databases, or if we wanted to use a different queuing system, or some other random piece of our workflow changed. By leveraging plugins, it’s simple a matter of adding or removing them.

	Can stoQ be used for more than just file analysis?

Absolutely. We’ve used it for everything from processing threat intel feeds, to scanning e-mails (and their attachments), to slack bots.

	How does stoQ work at scale?

As with anything that “scales”, it depends. Infrastructure, location, resources, and many other things come into play. In our experience, it is possible to scan hundreds of millions of payloads per day with the right setup. Overall, we have been very pleased with it’s ability to scale to fit all of our needs without issue.

	stoQ seems slow when decoding json, can this be improved?

Possibly. stoQ leverages BeautifulSoup’s UnicodeDammit function to serialize bytes into proper json serializable content. In order to limit the python library requirements and maximize compatibility, we purposefully limit core dependencies. BeautifulSoup by default attempts to leverage the python library cchardet, which is much more efficient than the default python library that BeautifulSoup falls back to chardet. Simply install cchardet via pip, and you may see a nice performance boost if you have complex results with bytes.

	I know stoQ supports async operations, but my plugins don’t seem to be completing any faster!

While all current stoQ plugins support the latest version of stoQ, not all of them will run asynchronously. There are several reasons for this. Some depend on 3rd party libraries that are not asyncio compatiable. For these, we will keep an eye out for updated 3rd party libraries that support asyncio. For many others, it is simply a matter of competing priorities. We, and very gratefully, several contributors to stoQ have been updating plugins for full asyncio support, it is still a time consuming process. If you would like to help in this effort, please do! We are more than happy to accept all of the help you are willing to volunteer.

	Do you plan on maintaining this project long term?

Absolutely. We use stoQ in several production grade capabilities, as do many stoQ users. We’ve been developing it since 2011, and will continue to do so.

	Can I contribute?

Of course! Check out the contributing section to find out how.

	Something seems broken, how can I get help?

Feel free to submit an issue [https://github.com/PUNCH-Cyber/stoq/issues].

	How can I ask other questions?

Feel free to join us on spectrum [https://spectrum.chat/stoq], reach out to us at @punchcyber [https://twitter.com/punchcyber] or the author @mlaferrera [https://twitter.com/mlaferrera]

Community Guide

Looking at learning more about the project and how to contribute? Read on.

	Contributing
	Welcome

	How to Contribute

	Ground Rules

	How to report a bug

	Suggest Features or Enhancements

	Code review process

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Contributing

Welcome

Thank you for considering contributing to stoQ. It’s people like you that keep
projects relevant and useful for the community. Our team looks forward to
collaborating with you.

How to Contribute

There are many ways to contribute, especially since stoQ is a full stack project.
Our team is small so any contributions are more than welcome :) That includes
tutorials, posts, documentation improvements, bug reports, feature requests, etc.

Ground Rules

Expectations

Keep in mind that repository maintainers and community contributors for stoQ
are volunteers. Respect amongst participants must be maintained at all times
and collaboration should be constructive. Everyone is expected to act in
accordance with the project’s Code of Conduct

How to report a bug

Security Disclosures

If you find a security vulnerability, do NOT open an issue.
Email info @ punchcyber.com instead.

Other Bug Disclosures

For other bugs, please open an issue on our issues list on Github and include
as much information as possible.

Suggest Features or Enhancements

If you have an idea for a feature that doesn’t exist in stoQ, there
are likely others out there with a similar need. Open an issue on our issues
list on GitHub which describes the feature you would like to see, why you
need it, and how it should work.

Code review process

Contribution Acceptance

Our team is small so Pull Requests are reviewed as time allows. Depending on
the size of the request this may take some time. However, request submitters
can expect initial comments or a status update from our team within two weeks.
Please be patient :)

Code of Conduct

Simply put, just be nice.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at info@punchcyber.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

[homepage]: https://www.contributor-covenant.org

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stoq	

 	
 	
 stoq.core	

 	
 	
 stoq.plugins.archiver	

 	
 	
 stoq.plugins.connector	

 	
 	
 stoq.plugins.decorator	

 	
 	
 stoq.plugins.dispatcher	

 	
 	
 stoq.plugins.provider	

 	
 	
 stoq.plugins.worker	

Index

 A
 | C
 | D
 | G
 | I
 | P
 | R
 | S
 | W

A

 	
 	archive() (stoq.plugins.archiver.ArchiverPlugin method)

 	
 	ArchiverPlugin (class in stoq.plugins.archiver)

 	ArchiverResponse (class in stoq.data_classes)

C

 	
 	ConnectorPlugin (class in stoq.plugins.connector)

D

 	
 	decorate() (stoq.plugins.decorator.DecoratorPlugin method)

 	DecoratorPlugin (class in stoq.plugins.decorator)

 	
 	DecoratorResponse (class in stoq.data_classes)

 	DispatcherPlugin (class in stoq.plugins.dispatcher)

 	DispatcherResponse (class in stoq.data_classes)

G

 	
 	get() (stoq.plugins.archiver.ArchiverPlugin method)

 	
 	get_dispatches() (stoq.plugins.dispatcher.DispatcherPlugin method)

I

 	
 	ingest() (stoq.plugins.provider.ProviderPlugin method)

P

 	
 	ProviderPlugin (class in stoq.plugins.provider)

R

 	
 	reconstruct_all_subresponses() (stoq.core.Stoq method)

 	
 	run() (stoq.core.Stoq method)

S

 	
 	save() (stoq.plugins.connector.ConnectorPlugin method)

 	scan() (stoq.core.Stoq method)

 	(stoq.plugins.worker.WorkerPlugin method)

 	scan_request() (stoq.core.Stoq method)

 	Stoq (class in stoq.core)

 	stoq (module)

 	stoq.core (module)

 	stoq.plugins.archiver (module)

 	
 	stoq.plugins.connector (module)

 	stoq.plugins.decorator (module)

 	stoq.plugins.dispatcher (module)

 	stoq.plugins.provider (module)

 	stoq.plugins.worker (module)

 	StoqException

 	StoqPluginException

 	StoqPluginNotFound

W

 	
 	WorkerPlugin (class in stoq.plugins.worker)

 	
 	WorkerResponse (class in stoq.data_classes)

 All modules for which code is available

	stoq.core

	stoq.data_classes

	stoq.exceptions

	stoq.plugins.archiver

	stoq.plugins.connector

	stoq.plugins.decorator

	stoq.plugins.dispatcher

	stoq.plugins.provider

	stoq.plugins.worker

 Source code for stoq.core

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _stoqoverview:

 Overview
 ========

 `stoQ` is an extremely flexible framework. In this section we will go over some of
 the most advanced uses and show examples of how it can be used as a framework.

 .. _framework:

 Framework
 =========

 stoQ is much more than simply a command to be run. First and foremost, stoQ is a
 framework. The command `stoq` is simply a means of interacting with the framework.
 For more detailed and robust information on APIs available for stoQ, please check
 out the :ref:`plugin documentation <pluginoverview>`.

 ``Stoq`` is the primary class for interacting with `stoQ` and its plugins.
 All arguments, except for plugins to be used, must be defined upon instantiation.
 Plugins can be loaded at any time. However, to ensure consistent behavior, it is
 recommended that all required plugins be loaded upon instantiation.

 For these examples, it is assumed the below :ref:`plugins have been installed <installplugins>` in
 `$CWD/plugins`:
 - dirmon
 - exif
 - filedir
 - hash
 - yara

 .. _individualscan:

 Individual Scan

 Individual scans are useful for scanning single payloads at a time. The user is
 responsible for ensuring a payload is passed to the ``Stoq`` class.

 .. note:: ``Provider`` plugins are ignored when conducting an individual scan.

 1. First, import the required class:

 >>> import asyncio
 >>> from stoq import Stoq, RequestMeta

 2. We will now define the plugins we want to use. In this case, we will be
 loading the ``hash``, and ``exif`` plugins:

 >>> workers = ['hash', 'exif']

 3. Now that we have our environment defined, lets instantiate the ``Stoq`` class:

 >>> s = Stoq(always_dispatch=workers)

 4. We can now load a payload, and scan it individually with `stoQ`:

 >>> src = '/tmp/bad.exe'
 >>> loop = asyncio.get_event_loop()
 >>> with open(src, 'rb') as src_payload:
 ... meta = RequestMeta(extra_data={'filename': src})
 ... results = loop.run_until_complete(s.scan(
 ... content=src_payload.read(),
 ... request_meta=meta))
 >>> print(results)
 ... {
 ... "time": "...",
 ... "results": [
 ... {
 ... "payload_id": "...",
 ... "size": 507904,
 ... "payload_meta": {
 ... "should_archive": true,
 ... "extra_data": {
 ... "filename": "/tmp/bad.exe"
 ... },
 ... "dispatch_to": []
 ... },
 ... "workers": {
 ... "hash": {
 ... [...]

 .. _providerscan:

 Using Providers

 Using stoQ with providers allows for the scanning of multiple payloads from
 multiple sources. This method will instantiate a `Queue` which payloads or requests
 are published to for scanning by `stoQ`. Additionally, payloads may be
 retrieved from multiple disparate data sources using `Archiver` plugins.

 1. First, import the required class:

 >>> import asyncio
 >>> from stoq import Stoq

 2. We will now define the plugins we want to use. In this case, we will be
 loading the ``dirmon``, ``filedir``, ``hash``, and ``exif`` plugins. We
 will also set the ``base_dir`` to a specific directory. Additionally,
 we will also set some plugin options to ensure the plugins are
 operating the way we'd like them:

 >>> always_dispatch = ['hash']
 >>> providers = ['dirmon']
 >>> connectors = ['filedir']
 >>> dispatchers = ['yara']
 >>> plugin_opts = {
 ... 'dirmon': {'source_dir': '/tmp/datadump'},
 ... 'filedir': {'results_dir': '/tmp/stoq-results'}
 ... }
 >>> base_dir = '/usr/local/stoq'
 >>> plugin_dirs = ['/opt/plugins']

 .. note:: Any plugin options available in the plugin's ``.stoq`` configuration
 file can be set via the ``plugin_opts`` argument.

 3. Now that we have our environment defined, lets instantiate the ``Stoq`` class,
 and run:

 >>> s = Stoq(
 ... base_dir=base_dir,
 ... plugin_dir_list=plugin_dirs,
 ... dispatchers=dispatchers,
 ... providers=providers,
 ... connectors=connectors,
 ... plugins_opts=plugins_opts,
 ... always_dispatch=always_dispatch
 ...)
 >>> loop = asyncio.get_event_loop()
 >>> loop.run_until_complete(s.run())

 A few things are happening here:
 #. The ``/tmp/datadump`` directory is being monitored for newly created files
 #. Each file is opened, and the payload is loaded into ``Stoq`` asynchronously
 #. The payload is scanned with the ``yara`` dispatcher plugin
 #. The yara dispatcher plugin returns a list of plugins that the payload should
 be scanned with
 #. The plugins identified by the ``yara`` dispatcher are loaded, and the payload is
 sent to them
 #. Each payload will always be sent to the ``hash`` plugin because it was defined
 in ``always_dispatch``
 #. The results from all plugins are collected, and sent to the ``filedir``
 connector plugin
 #. The ``filedir`` plugin saves each result to disk in ``/tmp/stoq-results``

 .. _manualscan:

 Manual Interaction
 ==================

 ``Stoq`` may also be interacted with manually, rather than relying on the normal workflow.
 In this section, we will touch on how this can be done.

 Instantiating stoQ

 Let's start by simply instantiating ``Stoq`` with no options. There are several arguments
 available when instantiating ``Stoq``, please refer to the :ref:`plugin documentation <pluginoverview>`
 for more information and options available.:

 >>> from stoq import Stoq
 >>> s = Stoq()

 Loading plugins

 `stoQ` plugins can be loaded using a simple helper function. The framework will
 automatically detect the type of plugin is it based on the ``class`` of the plugin.
 There is no need to define the plugin type, `stoQ` will handle that once it is loaded.:

 >>> plugin = s.load_plugin('yara')

 Instantiate Payload Object

 In order to scan a payload, a ``Payload`` object must first be instantiated. The
 ``Payload`` object houses all information related to a payload, to include the
 content of the payload and metadata (i.e., size, originating plugin information,
 dispatch metadata, among others) pertaining to the payload. Optionally, a ``Payload``
 object can be instantiated with a ``PayloadMeta`` object to ensure the originating
 metadata (i.e., filename, source path, etc...) is also made available:

 >>> import os
 >>> import asyncio
 >>> from stoq.data_classes import PayloadMeta, Payload
 >>> filename = '/tmp/test_file.exe'
 >>> with open(filename, 'rb') as src:
 ... meta = PayloadMeta(
 ... extra_data={
 ... 'filename': os.path.basename(filename),
 ... 'source_dir': os.path.dirname(filename),
 ... }
 ...)
 >>> payload = Payload(src.read(), meta)

 Scan payload

 There are two helper functions available for scanning a payload. If a dispatcher
 plugin is not being used, then a worker plugin must be defined by passing the
 ``add_start_dispatch`` argument. This tells `stoQ` to send the ``Payload`` object
 to the specified worker plugins.

 From raw bytes
 ^^^^^^^^^^^^^^

 If a `Payload` object has not been created yet, the content of the raw payload can
 simply be passed to the `Stoq.scan` function. A ``Payload`` object will automatically
 be created.:

 >>> loop = asyncio.get_event_loop()
 >>> start_dispatch = ['yara']
 >>> results = loop.run_until_complete(
 ... s.scan('raw bytes', add_start_dispatch=start_dispatch)
 ...)

 From ``Payload`` object
 ^^^^^^^^^^^^^^^^^^^^^^^

 If a ``Payload`` object has already been instantiated, as detailed above, the
 ``scan_request`` function may be called. First, a new `Request` object must
 be instantiated with the `Payload` object that we previously created:

 >>> import asyncio
 >>> from stoq import Payload, Request, RequestMeta
 >>> start_dispatch = ['yara']
 >>> loop = asyncio.get_event_loop()
 >>> payload = Payload(b'content to scan')
 >>> request = Request(payloads=[payload], request_meta=RequestMeta())
 >>> results = loop.run_until_complete(
 ... s.scan_request(request, add_start_dispatch=start_dispatch)
 ...)

 Save Results

 Finally, results may be saved using the desired ``Connector`` plugin. `stoQ` stores
 results from the framework as a ``StoqResponse`` object. The results will be saved
 to all connector plugins that have been loaded. In this example, we will only load
 the ``filedir`` plugin which will save the results to a specified directory.:

 >>> connector = s.load_plugin('filedir')
 >>> loop.run_until_complete(connector.save(results))

 Split Results

 In some cases it may be required to split results out individually. For example, when
 saving results to different indexes depending on plugin name, such as with ElasticSearch or Splunk.

 >>> results = loop.run_until_complete(s.scan(payload))
 >>> split_results = results.split()

 Reconstructing Subresponse Results

 stoQ can produce complex results depending on the recursion depth and extracted payload objects.
 In order to help handle complex results and limit redundant processing of payloads when using
 stoQ as a framework, a method exists that will allow for iterating over each result as if it
 were the original root object. This is especially useful when handling compressed archives, such
 as `zip` or `apk` files that may have multiple levels of archived content. Additionally, the
 defined decorators will be run against each newly constructed `StoqResponse` and added to the
 results.

 >>> await for result in s.reconstruct_all_subresponses(results):
 ... print(result)

 Below is a simple flow diagram of the iterated results when being reconstructed.

 .. image:: /_static/reconstruct-results.png

 .. _multiplugindir:

 Multiple Plugin directories
 ===========================

 When instantiating ``Stoq``, multiple plugins directories may be defined. For more
 information on default paths, please refer to the :ref:`getting started documentation <stoqhome>`::

 >>> from stoq import Stoq
 >>> plugin_directories = ['/usr/local/stoq/plugins', '/home/.stoq/plugins']
 >>> s = Stoq(plugin_dir_list=plugin_directories)

 API
 ===

"""

import os
import asyncio
import logging
import configparser
from collections import defaultdict
from pythonjsonlogger import jsonlogger # type: ignore
from logging.handlers import RotatingFileHandler
from typing import (
 AsyncGenerator,
 Awaitable,
 Coroutine,
 DefaultDict,
 Dict,
 List,
 Optional,
 Set,
 Tuple,
 Union,
)

import stoq.helpers as helpers
from stoq.utils import ratelimited
from stoq.exceptions import StoqException
from stoq.plugin_manager import StoqPluginManager
from stoq.data_classes import (
 ArchiverResponse,
 DecoratorResponse,
 DispatcherResponse,
 Error,
 ExtractedPayload,
 Payload,
 PayloadMeta,
 PayloadResults,
 Request,
 RequestMeta,
 StoqResponse,
 WorkerResponse,
)
from stoq.plugins import (
 ArchiverPlugin,
 ConnectorPlugin,
 DecoratorPlugin,
 DispatcherPlugin,
 WorkerPlugin,
)

Created to enable `None' as a valid paramater
_UNSET = object()

[docs]class Stoq(StoqPluginManager):
 def __init__(
 self,
 base_dir: Optional[str] = None,
 config_file: Optional[str] = None,
 log_dir: Optional[Union[str, object]] = _UNSET,
 log_level: Optional[str] = None,
 plugin_dir_list: Optional[List[str]] = None,
 plugin_opts: Optional[Dict[str, Dict]] = None,
 providers: Optional[List[str]] = None,
 provider_consumers: Optional[int] = None,
 source_archivers: Optional[List[str]] = None,
 dest_archivers: Optional[List[str]] = None,
 connectors: Optional[List[str]] = None,
 dispatchers: Optional[List[str]] = None,
 decorators: Optional[List[str]] = None,
 always_dispatch: Optional[List[str]] = None,
 max_queue: Optional[int] = None,
 max_recursion: Optional[int] = None,
 max_required_worker_depth: Optional[int] = None,
) -> None:
 """

 Core Stoq Class

 :param base_dir: Base directory for stoQ
 :param config_file: stoQ Configuration file
 :param log_dir: Path to log directory
 :param log_level: Log level for logging events
 :param plugin_dir_list: Paths to search for stoQ plugins
 :param plugin_opts: Plugin specific options that are passed once a plugin is loaded
 :param providers: Provider plugins to be loaded and run for sending payloads to scan
 :param source_archivers: Archiver plugins to be used for loading payloads for analysis
 :param dest_archiver: Archiver plugins to be used for archiving payloads and extracted payloads
 :param connectors: Connectors to be loaded and run for saving results
 :param dispatchers: Dispatcher plugins to be used
 :param decorators: Decorators to be used
 :param always_dispatch: Plugins to always send payloads to, no matter what
 :param provider_consumers: Number of provider consumers to instaniate
 :param max_queue: Max Queue size for Providers plugins
 :param max_recursion: Maximum level of recursion into a payload and extracted payloads
 :param max_required_worker_depth: Maximum depth for required worker plugins dependencies

 """
 if not base_dir:
 base_dir = os.getcwd()
 base_dir = os.path.realpath(base_dir)
 config_file = config_file or os.path.join(base_dir, 'stoq.cfg')
 config = helpers.StoqConfigParser(allow_no_value=True)
 if os.path.exists(config_file):
 config.read(config_file)

 self.max_queue = max_queue or config.getint('core', 'max_queue', fallback=100)
 self.provider_consumers = provider_consumers or config.getint(
 'core', 'provider_consumers', fallback=2
)
 self.max_recursion = max_recursion or config.getint(
 'core', 'max_recursion', fallback=10
)
 self.max_required_worker_depth = max_required_worker_depth or config.getint(
 'core', 'max_required_worker_depth', fallback=10
)

 if log_dir is _UNSET:
 log_dir = config.get(
 'core', 'log_dir', fallback=os.path.join(base_dir, 'logs')
)
 log_level = log_level or config.get('core', 'log_level', fallback='INFO')
 log_maxbytes = int(config.get('core', 'log_maxbytes', fallback='1500000'))
 log_backup_count = int(config.get('core', 'log_backup_count', fallback='5'))
 log_syntax = config.get('core', 'log_syntax', fallback='text')
 self._init_logger(
 log_dir,
 log_level, # type: ignore
 log_maxbytes,
 log_backup_count,
 log_syntax,
)

 plugin_dir_list = plugin_dir_list or config.getlist(
 'core', 'plugin_dir_list', fallback=os.path.join(base_dir, 'plugins')
)

 super().__init__(plugin_dir_list, plugin_opts, config)

 providers = providers or config.getlist('core', 'providers', fallback=[])
 self._loaded_provider_plugins = {
 d: self.load_plugin(d) for d in providers if d # type: ignore
 }

 source_archivers = source_archivers or config.getlist(
 'core', 'source_archivers', fallback=[]
)
 self._loaded_source_archiver_plugins = {
 d: self.load_plugin(d) for d in source_archivers if d # type: ignore
 }

 dest_archivers = dest_archivers or config.getlist(
 'core', 'dest_archivers', fallback=[]
)
 self._loaded_dest_archiver_plugins = {
 d: self.load_plugin(d) for d in dest_archivers if d # type: ignore
 }

 connectors = connectors or config.getlist('core', 'connectors', fallback=[])
 self._loaded_connector_plugins = [
 self.load_plugin(d) for d in connectors if d # type: ignore
]

 dispatchers = dispatchers or config.getlist('core', 'dispatchers', fallback=[])
 self._loaded_dispatcher_plugins = {
 d: self.load_plugin(d) for d in dispatchers if d # type: ignore
 }

 decorators = decorators or config.getlist('core', 'decorators', fallback=[])
 self._loaded_decorator_plugins = {
 d: self.load_plugin(d) for d in decorators if d # type: ignore
 }

 self.always_dispatch = always_dispatch or config.getlist(
 'core', 'always_dispatch', fallback=[]
)
 if self.always_dispatch:
 for ad in self.always_dispatch:
 self.load_plugin(ad)

[docs] @ratelimited()
 async def scan(
 self,
 content: bytes,
 payload_meta: Optional[PayloadMeta] = None,
 request_meta: Optional[RequestMeta] = None,
 add_start_dispatch: Optional[List[str]] = None,
 ratelimit: Optional[str] = None,
) -> StoqResponse:
 """

 Wrapper for `scan_request` that creates a `Payload` object from bytes

 :param content: Raw bytes to be scanned
 :param payload_meta: Metadata pertaining to originating source
 :param request_meta: Metadata pertaining to the originating request
 :param add_start_dispatch: Force first round of scanning to use specified plugins
 :param ratelimit: Rate limit calls to scan

 """
 self.log.debug(
 f'Content received ({len(content)} bytes): '
 f'PayloadMeta: {helpers.dumps(payload_meta, indent=0)}, '
 f'RequestMeta: {helpers.dumps(request_meta, indent=0)}'
)
 payload_meta = payload_meta or PayloadMeta()
 payload = Payload(content, payload_meta)
 request_meta = request_meta or RequestMeta()
 request = Request(payloads=[payload], request_meta=request_meta)
 return await self.scan_request(request, add_start_dispatch)

[docs] async def run(
 self,
 request_meta: Optional[RequestMeta] = None,
 add_start_dispatch: Optional[List[str]] = None,
) -> None:
 """

 Run stoQ using a provider plugin to scan multiple files until exhaustion

 :param request_meta: Metadata pertaining to the originating request
 :param add_start_dispatch: Force first round of scanning to use specified plugins

 """
 # Don't initialize any (provider) plugins here! They should be
 # initialized on stoq start-up or via load_plugin()
 if not self._loaded_provider_plugins:
 raise StoqException('No activated provider plugins')

 self.log.debug(
 f'Starting provider queue: RequestMeta: {request_meta}, '
 f'start_dispatches: {add_start_dispatch}'
)
 provider_queue: asyncio.Queue = asyncio.Queue(maxsize=self.max_queue)
 providers = [
 asyncio.ensure_future(plugin.ingest(provider_queue))
 for name, plugin in self._loaded_provider_plugins.items()
]
 workers = [
 asyncio.ensure_future(
 self._consume(provider_queue, request_meta, add_start_dispatch)
)
 for n in range(self.provider_consumers)
]
 try:
 await asyncio.gather(*providers)
 await provider_queue.join()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 self.log.exception(e, exc_info=True)
 finally:
 for worker in workers:
 worker.cancel()
 self.log.debug('Cancelling provider worker')

[docs] async def scan_request(
 self, request: Request, add_start_dispatch: Optional[List[str]] = None
) -> StoqResponse:
 """

 Scan an individual payload

 :param request: ``Request`` object of payload(s) to be scanned
 :param add_start_dispatch: Force first round of scanning to use specified plugins

 """

 self.log.debug(
 f'Request received: RequestMeta: {helpers.dumps(request.request_meta, indent=0)}, '
 f'start_dispatches: {helpers.dumps(add_start_dispatch, indent=0)}'
)

 add_dispatches: Set[Tuple[Payload, str]] = set()
 hashes_seen: DefaultDict[str, List] = defaultdict(list)
 for idx, payload in enumerate(request.payloads):
 if payload.results.payload_meta.should_scan and add_start_dispatch:
 for plugin_name in add_start_dispatch:
 add_dispatches.add((payload, plugin_name))

 sha = helpers.get_sha256(payload.content)
 hashes_seen[sha].append(idx)

 for _recursion_level in range(1, self.max_recursion + 1):
 self.log.debug(f'Beginning worker round {_recursion_level}')
 scan_result = await self._execute_scan_round(request, add_dispatches)

 if scan_result is None:
 self.log.debug('No more plugins to run, completing scan')
 break

 extracted_payloads, add_dispatches = scan_result
 # TODO: Add option for no-dedup
 for extracted_payload in extracted_payloads:
 payload_hash = helpers.get_sha256(extracted_payload.content)
 if payload_hash not in hashes_seen:
 self.log.debug(
 f'Extracted payload {extracted_payload.results.payload_id} with '
 f'PayloadMeta: {extracted_payload.results.payload_meta}'
)

 request.payloads.append(extracted_payload)
 hashes_seen[payload_hash].append(len(request.payloads) - 1)

 payload_meta = extracted_payload.results.payload_meta
 if _recursion_level >= self.max_recursion:
 request.errors.append(
 Error(
 error=f'Final worker round ({_recursion_level}) reached, unable to process payload',
 payload_id=extracted_payload.results.payload_id,
)
)
 elif payload_meta.should_scan and payload_meta.dispatch_to:
 add_dispatches.update(
 (extracted_payload, add_dispatch)
 for add_dispatch in payload_meta.dispatch_to
)
 else:
 payload_idx = hashes_seen[payload_hash]
 for idx in payload_idx:
 request.payloads[idx].results.extracted_by.extend(
 extracted_payload.results.extracted_by
)
 request.payloads[idx].results.extracted_from.extend(
 extracted_payload.results.extracted_from
)

 archive_tasks: List = []
 if request.request_meta.archive_payloads:
 for payload in request.payloads:
 if not payload.results.payload_meta.should_archive:
 continue

 for archiver in self._loaded_dest_archiver_plugins.values():
 archive_tasks.append(
 self._apply_archiver(archiver, payload, request)
)
 await asyncio.gather(*archive_tasks)

 response = StoqResponse(request=request)

 decorator_tasks = []
 for decorator in self._loaded_decorator_plugins.values():
 decorator_tasks.append(self._apply_decorator(decorator, response))
 await asyncio.gather(*decorator_tasks)

 connector_tasks = []
 for connector in self._loaded_connector_plugins:
 connector_tasks.append(self._apply_connector(connector, response))
 await asyncio.gather(*connector_tasks)
 return response

[docs] async def reconstruct_all_subresponses(
 self, stoq_response: StoqResponse
) -> AsyncGenerator[StoqResponse, None]:
 """

 Generate a new `StoqResponse` object for each `Payload` within
 the `Request`

 """

 for i, new_root_payload_result in enumerate(stoq_response.results):
 parent_payload_ids = {stoq_response.results[i].payload_id}
 # Contruct a new root Payload object since StoqResponse only has the
 # PayloadResults object
 new_root_payload = Payload(b'')
 new_root_payload.results = new_root_payload_result
 relevant_payloads: List[Payload] = [new_root_payload]

 for payload_result in stoq_response.results[i:]:
 for extracted_from in payload_result.extracted_from:
 if extracted_from in parent_payload_ids:
 parent_payload_ids.add(payload_result.payload_id)
 new_payload = Payload(b'')
 new_payload.results = payload_result
 relevant_payloads.append(new_payload)

 new_request = Request(
 payloads=relevant_payloads, request_meta=stoq_response.request_meta
)
 new_response = StoqResponse(
 request=new_request,
 time=stoq_response.time,
 scan_id=stoq_response.scan_id,
)
 decorator_tasks = []
 for plugin_name, decorator in self._loaded_decorator_plugins.items():
 decorator_tasks.append(self._apply_decorator(decorator, new_response))
 await asyncio.gather(*decorator_tasks)
 yield new_response

 async def _execute_scan_round(
 self, request: Request, add_dispatches: Set[Tuple[Payload, str]]
) -> Optional[Tuple[List[Payload], Set[Tuple[Payload, str]]]]:
 # Form total set of dispatches to run
 total_dispatches: Set[Tuple[Payload, str]] = set(add_dispatches)
 get_dispatches: List[Awaitable] = [
 self._get_dispatches(payload, request)
 for payload in request.payloads
 if payload.results.payload_meta.should_scan
]
 for future in asyncio.as_completed(get_dispatches):
 payload, plugins = await future
 for plugin in plugins:
 total_dispatches.add((payload, plugin))

 # Resolve plugin dependencies
 can_run, deferred = self._resolve_dependencies(total_dispatches, request)

 if not can_run: # Nothing left to do
 return None

 self.log.debug(
 f'Starting scan of {len(can_run)} tasks,'
 f' deferring {len(deferred)} to future rounds'
)

 # Run plugins
 nested_worker_results: List[# type: ignore
 Tuple[Set[Tuple[Payload, str]], List[Payload]]
] = await asyncio.gather(
 *[
 self._apply_worker(payload, plugin, request)
 for payload, plugin in can_run
]
)

 extracted_payloads = []
 for additional_dispatches, extracted in nested_worker_results:
 deferred.update(additional_dispatches)
 extracted_payloads.extend(extracted)
 return extracted_payloads, deferred

 async def _get_dispatches(
 self, payload: Payload, request: Request
) -> Tuple[Payload, Set[str]]:
 # Run all dispatchers to form our initial set of worker plugins to run
 worker_plugins: Set[str] = set(
 self.always_dispatch
) if self.always_dispatch else set()
 dispatch_results: List[Set[str]] = await asyncio.gather(# type: ignore
 *[
 self._apply_dispatcher(dispatcher, payload, request)
 for dispatcher in self._loaded_dispatcher_plugins.values()
]
)
 for dispatch_result in dispatch_results:
 worker_plugins.update(dispatch_result)
 return payload, worker_plugins

 def _resolve_dependencies(
 self, total_dispatches: Set[Tuple[Payload, str]], request: Request
) -> Tuple[Set[Tuple[Payload, WorkerPlugin]], Set[Tuple[Payload, str]]]:
 # Resolve dependencies for each worker plugin that we want to run
 total_can_run: Set[Tuple[Payload, WorkerPlugin]] = set()
 total_deferred: Set[Tuple[Payload, str]] = set()
 for payload, plugin in total_dispatches:
 try:
 can_run, deferred = self._resolve_plugin_dependencies(
 payload, plugin, request, set()
)
 except RuntimeError as e:
 self.log.exception(e)
 request.errors.append(
 Error(
 payload_id=payload.results.payload_id,
 plugin_name=plugin,
 error=helpers.format_exc(e),
)
)
 continue

 total_can_run.update(can_run)
 total_deferred.update(deferred)
 return total_can_run, total_deferred

 def _resolve_plugin_dependencies(
 self,
 payload: Payload,
 plugin_name: str,
 request: Request,
 init_plugin_dependency_chain: Set[str],
 depth: int = 0,
) -> Tuple[Set[Tuple[Payload, WorkerPlugin]], Set[Tuple[Payload, str]]]:
 if plugin_name in init_plugin_dependency_chain:
 raise RecursionError(
 'Circular required plugin dependency found, '
 f'unable to process plugin {plugin_name}'
)

 if depth > self.max_required_worker_depth:
 raise RecursionError(
 f'Max required plugin depth {self.max_required_worker_depth} reached, '
 'unable to generate additional tasks'
)

 try:
 plugin: WorkerPlugin = self.load_plugin(plugin_name) # type: ignore
 except Exception as e:
 msg = f'Worker plugin {plugin_name} failed to load'
 self.log.exception(msg)
 request.errors.append(
 Error(
 payload_id=payload.results.payload_id,
 plugin_name=plugin_name,
 error=helpers.format_exc(e, msg=msg),
)
)
 return set(), set()

 if plugin_name in payload.results.plugins_run['workers']:
 return set(), set()

 can_run: Set[Tuple[Payload, WorkerPlugin]] = set()
 deferred: Set[Tuple[Payload, str]] = set()
 if self._plugin_can_run(payload, plugin):
 can_run.add((payload, plugin))
 else:
 deferred.add((payload, plugin_name))

 if len(plugin.required_workers) != 0:
 self.log.debug(
 f'{plugin_name} has dependencies of {", ".join(plugin.required_workers)}'
)

 plugin_dependency_chain = init_plugin_dependency_chain.copy()
 plugin_dependency_chain.add(plugin_name)
 for required_plugin in plugin.required_workers:
 (
 required_plugin_can_run,
 required_plugin_deferred,
) = self._resolve_plugin_dependencies(
 payload,
 required_plugin,
 request,
 plugin_dependency_chain,
 depth + 1,
)
 can_run.update(required_plugin_can_run)
 deferred.update(required_plugin_deferred)
 return can_run, deferred

 async def _consume(
 self,
 provider_queue: asyncio.Queue,
 request_meta: Optional[RequestMeta] = None,
 add_start_dispatch: Optional[List[str]] = None,
) -> None:
 while True:
 try:
 task = await provider_queue.get()
 # Determine whether the provider has returned a `Payload`, `Request` or a task.
 # If it is a task, load the defined archiver plugin to load the
 # `Payload`, otherwise, simply continue on with the scanning.
 if isinstance(task, Payload):
 request = Request([task], request_meta)
 await self.scan_request(request, add_start_dispatch)
 elif isinstance(task, Request):
 # Only set request_meta if the task does not have request_meta already set
 if task.request_meta == RequestMeta():
 task.request_meta = request_meta
 await self.scan_request(task, add_start_dispatch)
 else:
 for source_archiver, task_meta in task.items():
 self.log.debug(
 f'Provider task received: source_archiver: {source_archiver}, '
 f'task_meta: {task_meta}'
)
 try:
 ar = ArchiverResponse(task_meta)
 payload = await self._loaded_source_archiver_plugins[
 source_archiver
].get(ar)
 if payload:
 request = Request([payload], request_meta)
 await self.scan_request(request, add_start_dispatch)
 except Exception as e:
 self.log.warn(
 f'"{task_meta}" failed with archiver "{source_archiver}": {str(e)}'
)
 provider_queue.task_done()
 except asyncio.QueueEmpty:
 pass

 def _plugin_can_run(self, payload: Payload, worker_plugin: WorkerPlugin) -> bool:
 for required_plugin_name in worker_plugin.required_workers:
 if required_plugin_name not in payload.results.plugins_run['workers']:
 return False
 return True

 async def _apply_worker(
 self, payload: Payload, plugin: WorkerPlugin, request: Request
) -> Tuple[Set[Tuple[Payload, str]], List[Payload]]:
 self.log.debug(
 f'Scanning Payload {payload.results.payload_id} with WorkerPlugin {plugin.plugin_name}'
)
 try:
 worker_response: Optional[WorkerResponse] = await plugin.scan(
 payload, request
)
 except Exception as e:
 worker_response = None
 msg = 'worker:failed to scan'
 self.log.exception(msg)
 request.errors.append(
 Error(
 payload_id=payload.results.payload_id,
 plugin_name=plugin.plugin_name,
 error=helpers.format_exc(e, msg=msg),
)
)
 payload.results.plugins_run['workers'].append(plugin.plugin_name)

 if not worker_response:
 return set(), []

 if worker_response.results is not None:
 payload.results.workers[plugin.plugin_name] = worker_response.results
 request.errors.extend(worker_response.errors)

 additional_dispatches: Set[Tuple[Payload, str]] = {
 (payload, plugin_name) for plugin_name in worker_response.dispatch_to
 }

 extracted_payloads: List[Payload] = [
 Payload(
 content=extracted_payload.content,
 payload_meta=extracted_payload.payload_meta,
 extracted_by=plugin.plugin_name,
 extracted_from=payload.results.payload_id,
)
 for extracted_payload in worker_response.extracted
]

 self.log.debug(
 f'Completed scan of {payload.results.payload_id} with WorkerPlugin {plugin.plugin_name} '
 f'{len(worker_response.results) if worker_response.results else 0} result keys, ' # type: ignore
 f'{len(additional_dispatches)} additional dispatches, and '
 f'{len(extracted_payloads)} extracted payloads'
)
 return additional_dispatches, extracted_payloads

 async def _apply_dispatcher(
 self, dispatcher: DispatcherPlugin, payload: Payload, request: Request
) -> Set[str]:
 self.log.debug(
 f'Sending {payload.results.payload_id} to dispatcher ({dispatcher.plugin_name})'
)
 plugin_names: Set[str] = set()
 try:
 dispatcher_result = await dispatcher.get_dispatches(payload, request)
 except Exception as e:
 msg = 'dispatcher:failed to dispatch'
 self.log.exception(msg)
 request.errors.append(
 Error(
 plugin_name=dispatcher.plugin_name,
 error=helpers.format_exc(e, msg=msg),
 payload_id=payload.results.payload_id,
)
)
 return plugin_names

 if dispatcher_result:
 if dispatcher_result.plugin_names is not None:
 plugin_names.update(dispatcher_result.plugin_names)
 self.log.debug(
 f'Dispatching {payload.results.payload_id} to {plugin_names}'
)

 if dispatcher_result.meta is not None:
 payload.dispatch_meta[dispatcher.plugin_name] = dispatcher_result.meta

 return plugin_names

 async def _apply_archiver(
 self, archiver: ArchiverPlugin, payload: Payload, request: Request
) -> None:
 archiver_response: Optional[ArchiverResponse] = None
 self.log.debug(
 f'Archiving {payload.results.payload_id} with {archiver.plugin_name}'
)
 try:
 archiver_response = await archiver.archive(payload, request)
 except Exception as e:
 msg = 'archiver:failed to archive'
 self.log.exception(msg)
 request.errors.append(
 Error(
 payload_id=payload.results.payload_id,
 plugin_name=archiver.plugin_name,
 error=helpers.format_exc(e, msg=msg),
)
)

 payload.results.plugins_run['archivers'].append(archiver.plugin_name)
 if archiver_response:
 if archiver_response.errors is not None:
 request.errors.extend(archiver_response.errors)

 if archiver_response.results is not None:
 payload.results.archivers[
 archiver.plugin_name
] = archiver_response.results

 async def _apply_decorator(
 self, decorator: DecoratorPlugin, response: StoqResponse
) -> StoqResponse:
 """Mutates the given StoqResponse object to include decorator information"""
 self.log.debug(f'Applying decorator {decorator.plugin_name}')
 try:
 decorator_response = await decorator.decorate(response)
 except Exception as e:
 msg = 'decorator'
 self.log.exception(msg)
 error = Error(
 plugin_name=decorator.plugin_name, error=helpers.format_exc(e, msg=msg)
)
 response.errors.append(error)
 return response
 if decorator_response is None:
 return response
 if decorator_response.results is not None:
 response.decorators[decorator.plugin_name] = decorator_response.results
 if decorator_response.errors:
 response.errors.extend(decorator_response.errors)
 return response

 async def _apply_connector(
 self, connector: ConnectorPlugin, response: StoqResponse
) -> None:
 self.log.debug(f'Saving results to connector {connector.plugin_name}')
 try:
 await connector.save(response)
 except Exception as e:
 msg = f'Failed to save results using {connector.__module__}'
 self.log.exception(msg)
 error = Error(
 plugin_name=connector.plugin_name, error=helpers.format_exc(e, msg=msg)
)

 def _init_logger(
 self,
 log_dir: Union[object, str],
 log_level: str,
 log_maxbytes: int,
 log_backup_count: int,
 log_syntax: str,
) -> None:
 self.log = logging.getLogger('stoq')
 self.log.setLevel(log_level.upper())

 if log_syntax == 'json':
 formatter = jsonlogger.JsonFormatter # type: ignore
 else:
 formatter = logging.Formatter

 stderr_handler = logging.StreamHandler()
 stderr_logformat = formatter(
 '[%(asctime)s %(levelname)s] %(name)s: ' '%(message)s'
)
 stderr_handler.setFormatter(stderr_logformat)
 self.log.addHandler(stderr_handler)

 if log_dir:
 # Let's attempt to make the log directory if it doesn't exist
 os.makedirs(log_dir, exist_ok=True) # type: ignore
 log_path = os.path.abspath(
 os.path.join(log_dir, 'stoq.log') # type: ignore
)
 file_handler = RotatingFileHandler(
 filename=log_path,
 mode='a',
 maxBytes=log_maxbytes,
 backupCount=log_backup_count,
)
 file_logformat = formatter(
 '%(asctime)s %(levelname)s %(name)s:'
 '%(filename)s:%(funcName)s:%(lineno)s: '
 '%(message)s',
 datefmt='%Y-%m-%d %H:%M:%S',
)
 file_handler.setFormatter(file_logformat)
 self.log.addHandler(file_handler)
 self.log.debug(f'Writing logs to {log_path}')

 Source code for stoq.data_classes

#!/usr/bin/env python5

Copyright 2014-present PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import uuid
from copy import deepcopy
from datetime import datetime
from typing import Dict, List, Optional, DefaultDict, Union

import stoq.helpers as helpers

class Error:
 def __init__(
 self,
 error: str,
 plugin_name: Optional[str] = None,
 payload_id: Optional[str] = None,
) -> None:
 """

 Object for errors collected from plugins

 :param error: Error message to add to results
 :param plugin_name: The name of the plugin producing the error
 :param payload_id: The ``payload_id`` of the ``Payload`` that the error occurred on

 >>> from stoq import Error, Payload
 >>> errors: List[Error] = []
 >>> payload = Payload(b'test bytes')
 >>> err = Error(
 ... error='This is our error message',
 ... plugin_name='test_plugin',
 ... payload_id=payload.results.payload_id
 ...)
 >>> errors.append(err)

 """
 self.error = error
 self.plugin_name = plugin_name
 self.payload_id = payload_id

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

class PayloadMeta:
 def __init__(
 self,
 should_archive: bool = True,
 should_scan: bool = True,
 extra_data: Optional[Dict] = None,
 dispatch_to: Optional[List[str]] = None,
) -> None:
 """

 Object to store metadata pertaining to a payload

 :param should_archive: Archive payload if destination archiver is defined
 :param should_scan: Define whether the payload should be scanned by worker plugin
 :param extra_data: Additional metadata that should be added to the results
 :param dispatch_to: Force payload to be dispatched to specified plugins

 >>> from stoq import PayloadMeta
 >>> extra_data = {'filename': 'bad.exe', 'source': 'suricata'}
 >>> dispatch_to = ['yara']
 >>> payload_meta = PayloadMeta(
 ... should_archive=True, extra_data=extra_data, dispatch_to=dispatch_to
 ...)

 """

 self.should_archive = should_archive
 self.should_scan = should_scan
 self.extra_data = {} if extra_data is None else extra_data
 self.dispatch_to = [] if dispatch_to is None else dispatch_to

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

class Payload:
 def __init__(
 self,
 content: Union[bytes, str],
 payload_meta: Optional[PayloadMeta] = None,
 extracted_by: Optional[Union[str, List[str]]] = None,
 extracted_from: Optional[Union[str, List[str]]] = None,
 payload_id: Optional[str] = None,
) -> None:
 """

 Object to store payload and related information

 :param content: Raw bytes to be scanned
 :param payload_meta: Metadata pertaining to originating source
 :param extracted_by: Name of plugin that extracted the payload
 :param extracted_from: Unique payload ID the payload was extracted from
 :param payload_id: Unique ID of payload

 >>> from stoq import PayloadMeta, Payload
 >>> content = b'This is a raw payload'
 >>> payload_meta = PayloadMeta(should_archive=True)
 >>> payload = Payload(content, payload_meta=payload_meta)

 """
 self.content = content if isinstance(content, bytes) else content.encode()
 self.dispatch_meta: Dict[str, Dict] = {}
 self.results = PayloadResults(
 payload_id=payload_id,
 size=len(content),
 payload_meta=payload_meta,
 extracted_from=extracted_from,
 extracted_by=extracted_by,
)

 def __repr__(self):
 return repr(self.__dict__)

class RequestMeta:
 def __init__(
 self,
 archive_payloads: bool = True,
 source: Optional[str] = None,
 extra_data: Optional[Dict] = None,
) -> None:
 """

 Origin source request metadata

 :param archive_payload: Archive payload if destination archiver is defined
 :param source: Request source information
 :param extra_data: Additional metadata that should be added to the results

 >>> from stoq import RequestMeta
 >>> extra_data = {'source': 'Ingest from data dump directory'}
 >>> request = RequestMeta(archive_payload=True, extra_data=extra_data)

 """
 self.archive_payloads = archive_payloads
 self.source = source
 self.extra_data = {} if extra_data is None else extra_data

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

 def __eq__(self, other):
 return self.__dict__ == other.__dict__

class PayloadResults:
 def __init__(
 self,
 size: int,
 payload_id: Optional[str] = None,
 payload_meta: Optional[PayloadMeta] = None,
 plugins_run: Optional[Dict[str, List[str]]] = None,
 extracted_from: Optional[Union[str, List[str]]] = None,
 extracted_by: Optional[Union[str, List[str]]] = None,
 workers: Optional[Dict] = None,
) -> None:
 """

 Results from worker plugins from the scanning of a payload

 :param payload_id: Unique ID of payload
 :param size: Size of raw payload
 :param payload_meta: `PayloadMeta` object for payload
 :param plugins_run: Plugins used to scan payload
 :param extracted_from: Unique payload ID the payload was extracted from
 :param extracted_by: Name of plugin that extracted the payload
 :param workers: Results from worker plugins

 """
 self.size = size
 self.payload_id = str(uuid.uuid4()) if payload_id is None else payload_id
 self.payload_meta = PayloadMeta() if payload_meta is None else payload_meta
 self.plugins_run = plugins_run or {'workers': [], 'archivers': []}
 if isinstance(extracted_from, str):
 extracted_from = [extracted_from]
 self.extracted_from = extracted_from or []
 if isinstance(extracted_by, str):
 extracted_by = [extracted_by]
 self.extracted_by = extracted_by or []
 self.workers = workers or {}
 self.archivers: Dict[str, Dict] = {}

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

class Request:
 def __init__(
 self,
 payloads: Optional[List[Payload]] = None,
 request_meta: Optional[RequestMeta] = None,
 errors: Optional[List[Error]] = None,
):
 """

 Object that contains the state of a ``Stoq`` scan. This object is accessible within
 all archiver, dispatcher, and worker plugins.

 :param payloads: All payloads that are being processed, to include extracted payloads
 :param request_meta: Original ``RequestMeta`` object
 :param errors: All errors that have been generated by plugins or ``Stoq``

 """

 self.payloads = payloads or []
 self.request_meta = request_meta or RequestMeta()
 self.errors = errors or []

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

class StoqResponse:
 def __init__(
 self,
 request: Request,
 time: Optional[str] = None,
 decorators: Optional[Dict[str, Dict]] = None,
 scan_id: Optional[str] = None,
) -> None:
 """

 Response object of a completed scan

 :param results: ``PayloadResults`` object of scanned payload
 :param request_meta: ``RequetMeta`` object pertaining to original scan request
 :param time: ISO Formatted timestamp of scan
 :param decorators: Decorator plugin results

 """
 self.results = [p.results for p in request.payloads]
 self.request_meta = request.request_meta
 self.errors = request.errors
 self.time: str = datetime.now().isoformat() if time is None else time
 self.decorators = {} if decorators is None else decorators
 self.scan_id = str(uuid.uuid4()) if scan_id is None else scan_id

 def split(self) -> List[Dict]:
 """
 Split worker results individually

 """
 split_results = []
 for result in self.results:
 for k, v in result.workers.items():
 rcopy = deepcopy(self.__dict__)
 rcopy['results'] = [deepcopy(result.__dict__)]
 rcopy['results'][0]['workers'] = {k: v}
 split_results.append(rcopy)
 return split_results

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

class ExtractedPayload:
 def __init__(
 self, content: bytes, payload_meta: Optional[PayloadMeta] = None
) -> None:
 """

 Object to store extracted payloads for further analysis

 :param content: Raw bytes of extracted payload
 :param payload_meta: ``PayloadMeta`` object containing metadata about extracted payload

 >>> from stoq import PayloadMeta, ExtractedPayload
 >>> src = '/tmp/bad.exe'
 >>> data = open(src, 'rb').read()
 >>> extra_data = {'source': src}
 >>> extracted_meta = PayloadMeta(should_archive=True, extra_data=extra_data)
 >>> extracted_payload = ExtractedPayload(content=data, payload_meta=extracted_meta)

 """

 self.content = content
 self.payload_meta: PayloadMeta = PayloadMeta() if payload_meta is None else payload_meta

[docs]class WorkerResponse:
 def __init__(
 self,
 results: Optional[Dict] = None,
 extracted: Optional[List[ExtractedPayload]] = None,
 errors: Optional[List[Error]] = None,
 dispatch_to: Optional[List[str]] = None,
) -> None:
 """

 Object containing response from worker plugins

 :param results: Results from worker scan
 :param extracted: ``ExtractedPayload`` objects of extracted payloads from scan
 :param errors: Errors that occurred

 >>> from stoq import WorkerResponse, ExtractedPayload
 >>> results = {'is_bad': True, 'filetype': 'executable'}
 >>> extracted_payload = [ExtractedPayload(content=data, payload_meta=extracted_meta)]
 >>> response = WorkerResponse(results=results, extracted=extracted_payload)

 """
 self.results = results
 self.extracted = extracted or []
 self.errors = errors or []
 self.dispatch_to = dispatch_to or []

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

[docs]class ArchiverResponse:
 def __init__(
 self, results: Optional[Dict] = None, errors: Optional[List[Error]] = None
) -> None:
 """

 Object containing response from archiver destination plugins

 :param results: Results from archiver plugin
 :param errors: Errors that occurred

 >>> from stoq import ArchiverResponse
 >>> results = {'file_id': '12345'}
 >>> archiver_response = ArchiverResponse(results=results)

 """
 self.results = results
 self.errors = errors or []

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

[docs]class DispatcherResponse:
 def __init__(
 self,
 plugin_names: Optional[List[str]] = None,
 meta: Optional[Dict] = None,
 errors: Optional[List[Error]] = None,
) -> None:
 """

 Object containing response from dispatcher plugins

 :param plugins_names: Plugins to send payload to for scanning
 :param meta: Metadata pertaining to dispatching results
 :param errors: Errors that occurred

 >>> from stoq import DispatcherResponse
 >>> plugins = ['yara', 'exif']
 >>> meta = {'hit': 'exe_file'}
 >>> dispatcher = DispatcherResponse(plugin_names=plugins, meta=meta)

 """
 self.plugin_names = [] if plugin_names is None else plugin_names
 self.meta = {} if meta is None else meta
 self.errors = errors or []

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

[docs]class DecoratorResponse:
 def __init__(
 self, results: Optional[Dict] = None, errors: Optional[List[Error]] = None
) -> None:
 """

 Object containing response from decorator plugins

 :param results: Results from decorator plugin
 :param errors: Errors that occurred

 >>> from stoq import DecoratorResponse
 >>> results = {'decorator_key': 'decorator_value'}
 >>> errors = ['This plugin failed for a reason']
 >>> response = DecoratorResponse(results=results, errors=errors)

 """
 self.results = results
 self.errors = errors or []

 def __str__(self) -> str:
 return helpers.dumps(self)

 def __repr__(self):
 return repr(self.__dict__)

 Source code for stoq.exceptions

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

[docs]class StoqException(Exception):
 pass

[docs]class StoqPluginException(Exception):
 pass

[docs]class StoqPluginNotFound(Exception):
 pass

 Source code for stoq.plugins.archiver

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _archiver:

 Overview
 ========

 Archiver plugins are used for retrieving or saving scanned payloads. A payload
 can be anything from the initial payload scanned, or extracted payloads from
 previous scans. There are two types of archivers, :ref:`source <archiversource>`
 and :ref:`destination <archiverdest>`.

 .. _archiverdest:

 destination
 ^^^^^^^^^^^

 Archiver plugins used as a destination useful for saving payloads, be it the original
 scanned payload or any extracted payloads. Multiple destination archivers can be
 defined, allowing for a payload to be saved in either a single or multiple locations.
 The results from this plugin method may be used to subsequently load the payload again.

 Destination archiver plugins can be defined multiple ways. In these examples, we will
 use the ``filedir`` archiver plugin.

 From ``stoq.cfg``::

 [core]
 dest_archivers = filedir

 .. note:: Multiple plugins can be defined separated by a comma

 From the command line::

 $ stoq run -A filedir [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> dest_archivers = ['filedir']
 >>> s = Stoq(dest_archivers=dest_archivers)

 .. _archiversource:

 source
 ^^^^^^

 Archiver plugins used as a source retrieve payloads for scanning. This is useful
 in several use cases, such as when using a provider plugin that isn't able to pass
 a payload to `stoQ`. For example, if the provider plugin being used leverages a
 queueing system, such as RabbitMQ, there may be problems placing multiple payloads
 onto a queue as it is inefficient, prone to failure, and does not scale well. With
 archiver plugins as a source, the queuing system can be leveraged by sending a
 message with a payload location, and the archiver plugin can then retrieve the
 payload for scanning. The `ArchiverResponse` results returned from
 `ArchiverPlugin.archive()` is used to load the payload.

 Source archiver plugins can be defined multiple ways. In these examples, we will
 use the ``filedir`` archiver plugin.

 From ``stoq.cfg``::

 [core]
 source_archivers = filedir

 .. note:: Multiple plugins can be defined separated by a comma

 From the command line::

 $ stoq run -S filedir [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> source_archivers = ['filedir']
 >>> s = Stoq(source_archivers=source_archivers)

 .. _writingplugin:

 Writing a plugin
 ================

 Unlike most other `stoQ` plugins, `archiver` plugins have two core methods, of which at
 least one of the below is required.

 - archive
 - get

 The ``archive`` method is used to archive payloads that are passed to `stoQ` or extracted
 from other plugins. In order for a payload to be archived, that attribute ``should_archive``
 must be set to ``True`` in the payloads ``PayloadMeta`` object. If set to ``False``, the
 payload will not be archived.

 An `archiver` plugin must be a subclass of the ``ArchiverPlugin`` class.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 Example
 ^^^^^^^
 ::

 from typing import Dict, Optional

 from stoq.plugins import ArchiverPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import ArchiverResponse, Payload, Request, PayloadMeta

 class ExampleArchiver(ArchiverPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.archive_path = config.get(
 'options', 'archive_path', fallback='/tmp/archive_payload')

 async def archive(
 self, payload: Payload, request: Request
) -> Optional[ArchiverResponse]:
 with open(f'{self.archive_path}', 'wb) as out:
 out.write(payload.content)
 ar = ArchiverResponse({'path': f'{self.archive_path}'})
 return ar

 async def get(self, task: ArchiverResponse) -> Optional[Payload]:
 with open(task.results['path'], 'rb') as infile:
 return Payload(
 infile.read(),
 PayloadMeta(
 extra_data={'path': task.results['path']}))

 .. note:: `ArchiverPlugin.archive()` returns an `ArchiverResponse` object, which contains
 metadata that is later used by `ArchiverPlugin.get()` to load the payload.

 API
 ===

"""

from typing import Optional

from stoq.data_classes import ArchiverResponse, Payload, Request
from stoq.plugins import BasePlugin

[docs]class ArchiverPlugin(BasePlugin):
[docs] async def archive(
 self, payload: Payload, request: Request
) -> Optional[ArchiverResponse]:
 """
 Archive payload

 :param payload: Payload object to archive
 :param request: Originating Request object

 :return: ArchiverResponse object. Results are used to retrieve payload.

 >>> import asyncio
 >>> from stoq import Stoq, Payload
 >>> payload = Payload(b'this is going to be saved')
 >>> s = Stoq()
 >>> loop = asyncio.get_event_loop()
 >>> archiver = s.load_plugin('filedir')
 >>> loop.run_until_complete(archiver.archive(payload))
 ... {'path': '/tmp/bad.exe'}

 """
 pass

[docs] async def get(self, task: ArchiverResponse) -> Optional[Payload]:
 """
 Retrieve payload for processing

 :param task: Task to be processed to load payload. Must contain `ArchiverResponse`
 results from `ArchiverPlugin.archive()`

 :return: Payload object for scanning

 >>> import asyncio
 >>> from stoq import Stoq, ArchiverResponse
 >>> s = Stoq()
 >>> loop = asyncio.get_event_loop()
 >>> archiver = s.load_plugin('filedir')
 >>> task = ArchiverResponse(results={'path': '/tmp/bad.exe'})
 >>> payload = loop.run_until_complete(archiver.get(task))

 """
 pass

 Source code for stoq.plugins.connector

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _connector:

 Overview
 ========

 The last plugin class is the Connector plugin. This plugin class allows for the
 saving or passing off of the final result. Once all other plugins have completed
 their tasks, the final result is sent to the loaded connector plugins for handling.
 For example, a connector plugin may save results to disk, ElasticSearch, or even
 pass them off to a queueing system such as RabbitMQ.

 Connector plugins can be defined multiple ways. In these examples, we will use the
 ``filedir`` connector plugin, allowing results to be saved to disk.

 From ``stoq.cfg``::

 [core]
 connectors = filedir

 .. note:: Multiple plugins can be defined separated by a comma.

 From the command line::

 $ stoq run -C filedir [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> connectors = ['filedir']
 >>> s = Stoq(connectors=connectors, [...])

 Writing a plugin
 ================

 A `connector` plugin must be a subclass of the ``ConnectorPlugin`` class.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 Example

 ::

 from typing import Dict, Optional

 from stoq.plugins import ConnectorPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import StoqResponse

 class ExampleConnector(ConnectorPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.output_file = config.get(
 'options', 'output_file', fallback='/tmp/stoqresult.txt')

 async def save(self, response: StoqResponse) -> None:
 with open(f'{self.output_file}', 'w') as result:
 result.write(response)

 API
 ===

"""

from abc import abstractmethod, ABC

from stoq.data_classes import StoqResponse
from stoq.plugins import BasePlugin

[docs]class ConnectorPlugin(BasePlugin, ABC):
[docs] @abstractmethod
 async def save(self, response: StoqResponse) -> None:
 pass

 Source code for stoq.plugins.decorator

#!/usr/bin/env python3
Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _decorator:

 Overview
 ========

 Decorator plugins are the last plugins run just before saving results. This
 plugin class allows for the analysis of all results from each plugin, the
 original payload, and any extracted payloads. Multiple decorator plugins can
 be loaded, but each plugin is only passed the results once. Decorator plugins
 are extremely useful when post-processing is required of the collective
 results from the entire stoQ workflow.

 Decorator plugins can be defined multiple ways. In these examples, we will use
 the ``test_decorator`` decorator plugin.

 From ``stoq.cfg``::

 [core]
 decorators = test_decorator

 .. note:: Multiple plugins can be defined separated by a comma.

 From the command line::

 $ stoq run -D yara [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> decorators = ['test_decorator']
 >>> s = Stoq(decorators=decorators, [...])

 Writing a plugin
 ================

 A `decorator` plugin must be a subclass of the ``DecoratorPlugin`` class. Results
 from a decorator are appended to the final ``StoqResponse`` object.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 Example

 ::

 from typing import Dict, Optional

 from stoq.plugins import DecoratorPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import StoqResponse, DecoratorResponse

 class ExampleDecorator(DecoratorPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.msg = config.get('options', 'msg', fallback='do_more msg')

 async def decorate(self, response: StoqResponse) -> Optional[DecoratorResponse]:
 do_more = False
 if 'yara' in response.results[0].plugins_run:
 do_more = True
 dr = DecoratorResponse({'do_more': do_more, 'msg': self.msg})
 return dr

 API
 ===

"""

from typing import Optional
from abc import abstractmethod, ABC

from stoq.data_classes import StoqResponse, DecoratorResponse
from stoq.plugins import BasePlugin

[docs]class DecoratorPlugin(BasePlugin, ABC):
[docs] @abstractmethod
 async def decorate(self, response: StoqResponse) -> Optional[DecoratorResponse]:
 pass

 Source code for stoq.plugins.dispatcher

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _dispatcher:

 Overview
 ========

 Dispatcher plugins allow for dynamic routing and loading of worker plugins. These
 plugins are extremely powerful in that they allow for an extremely flexible scanning
 flow based on characteristics of the payload itself. For instance, routing a payload
 to a worker plugin for scanning can be done by yara signatures, TRiD results, simple
 regex matching, or just about anything else. Each loaded dispatcher plugin is run
 once per payload.

 Dispatcher plugins can be defined multiple ways. In these examples, we will use the
 ``yara`` dispatcher plugin.

 From ``stoq.cfg``::

 [core]
 dispatchers = yara

 .. note:: Multiple plugins can be defined separated by a comma

 From the command line::

 $ stoq run -R yara [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class:

 >>> import stoq
 >>> dispatchers = ['yara']
 >>> s = Stoq(dispatchers=dispatchers, [...])

 Now, let's write a simple yara rule to pass a payload to the ``pecarve`` plugin if a
 DOS stub is found::

 rule exe_file
 {
 meta:
 plugin = "pecarve"
 save = "True"
 strings:
 $MZ = "MZ"
 $ZM = "ZM"
 $dos_stub = "This program cannot be run in DOS mode"
 $win32_stub = "This program must be run under Win32"
 condition:
 ($MZ or $ZM) and ($dos_stub or $win32_stub)
 }

 In this case, if this yara signature hits on a payload, the payload will be passed to
 the ``pecarve`` plugin, which will then extract the PE file as a payload, and send it
 to `stoQ` for continued scanning. Additionally, because ``save = "True"``, the extracted
 payload will also be saved if a :ref:`Destination Archiver <archiverdest>` plugin is
 defined.

 Writing a plugin
 ================

 A `dispatcher` plugin must be a subclass of the ``DispatcherPlugin`` class.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 Example

 ::

 from typing import Dict, Optional

 from stoq.plugins import DispatcherPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import Payload, DispatcherResponse, Request

 class ExampleDispatcher(DispatcherPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.msg = config.get('options', 'msg', fallback='Useful content here')

 async def get_dispatches(
 self, payload: Payload, request: Request
) -> Optional[DispatcherResponse]:
 dr = DispatcherResponse()
 dr.meta['example_key'] = 'Useful metadata info'
 dr.meta['msg'] = self.msg
 return dr

 API
 ===

"""

from typing import Optional
from abc import abstractmethod, ABC

from stoq.data_classes import Payload, DispatcherResponse, Request
from stoq.plugins import BasePlugin

[docs]class DispatcherPlugin(BasePlugin, ABC):
[docs] @abstractmethod
 async def get_dispatches(
 self, payload: Payload, request: Request
) -> Optional[DispatcherResponse]:
 pass

 Source code for stoq.plugins.provider

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _provider:

 Overview
 ========

 Provider plugins are designed for passing multiple payloads, or locations of payloads,
 to `stoQ`. They allow for multiple payloads to be run against `stoQ` until the source
 is exhausted. As such, they are useful for monitoring directories for new files,
 subscribing to a queue (i.e., RabbitMQ, Google PubSub, ZeroMQ), or scanning entire
 directories recursively. Multiple provider plugins can be provided allowing for even more
 flexibility. Provider plugins may either send a payload to `stoQ` for scanning, or send a
 message that an :ref:`Archiver plugin <archiver>` is able to handle for loading of a
 payload.

 .. note:: Provider plugins are not available when using `scan mode`. This is due to
 `scan mode` being designed for individual scans, not multiple payloads.

 Provider plugins can be defined multiple ways. In these examples, we will use the
 ``dirmon`` provider plugin.

 From ``stoq.cfg``::

 [core]
 providers = dirmon

 .. note:: Multiple plugins can be defined separated by a comma

 From the command line::

 $ stoq run -P dirmon [...]

 .. note:: Multiple plugins can be defined by simply adding the plugin name

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> providers = ['dirmon']
 >>> s = Stoq(providers=providers, [...])

 Writing a plugin
 ================

 `Provider plugins` add ``Payload`` or ``Request`` objects to the `stoQ` queue, or a ``str``.
 If a ``Payload`` object is added, `stoQ` will begin processing the payload. If a ``Request`` object
 is added, `stoQ` will begin processing the request (which should contain at least one payload).
 If a ``str`` is added, `stoQ` will pass it to ``Archiver`` plugins that were loaded when ``Stoq``
 was instantiated with the ``source_archivers`` argument.

 A `provider` plugin must be a subclass of the ``ProviderPlugin`` class.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 If a ``Request`` object is added to the queue and has `request_meta` set, then the
 `request_meta` passed to the ``Stoq`` `run()` method is ignored for this request.

 Example

 ::

 from asyncio import Queue
 from typing import Dict, Optional

 from stoq import Payload, PayloadMeta
 from stoq.plugins import ProviderPlugin
 from stoq.helpers import StoqConfigParser

 class ExampleProvider(ProviderPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.meta = config.get('options', 'meta', fallback='This msg will always be')

 async def ingest(self, queue: Queue) -> None:
 payload_meta = PayloadMeta(extra_data={'msg': self.meta})
 await queue.put(Payload(b'This is a payload', payload_meta=payload_meta))

 API
 ===

"""

from asyncio import Queue
from abc import abstractmethod, ABC

from stoq.plugins import BasePlugin

[docs]class ProviderPlugin(BasePlugin, ABC):
[docs] @abstractmethod
 async def ingest(self, queue: Queue) -> None:
 pass

 Source code for stoq.plugins.worker

#!/usr/bin/env python3

Copyright 2014-2018 PUNCH Cyber Analytics Group
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
 .. _worker:

 Overview
 ========

 Worker plugins are the primary data producers within `stoQ`. These plugins
 allow for tasks such as scanning payloads with yara, hashing payloads, and
 even extracting indicators of compromise (IOC) from documents. Worker plugins
 can be defined in all scanning modes. Additionally worker plugins can be
 dynamically loaded using dispatching plugins. More information on dispatcher
 plugins can be found in the :ref:`dispatcher plugin section <dispatcher>`.

 Worker plugins can be defined multiple ways. In these examples, we will use
 the ``hash`` worker plugin.

 From the command line, worker plugins can be defined two different ways,
 depending on the use.

 If *only* the original payload must be scanned, then ``--start-dispatch``
 or ``-s`` command line argument may be used.::

 $ stoq scan -s hash [...]

 However, if the original payload and all subsequent payloads must be scanned,
 the ``--always-dispatch`` or ``-a`` command line argument may be used::

 $ stoq scan -a hash [...]

 .. note:: The difference between ``--start-dispatch`` and ``--always-dispatch``
 can be somewhat confusing. The primary difference between the two is
 that if a worker plugin extracts any payloads for further scanning,
 any extracted payloads will only be scanned by workers defined by
 ``--always-dispatch``. If ``--start-dispatch`` was used, the plugin
 defined will not be used to scan any extracted payloads.

 Or, when instantiating the ``Stoq()`` class::

 >>> import stoq
 >>> workers = ['yara']
 >>> s = Stoq(always_dispatch=workers, [...])

 Lastly, worker plugins can be defined by dispatcher plugins. As mentioned previously,
 more information on them can be found in the :ref:`dispatcher plugin section <dispatcher>`

 Writing a plugin
 ================

 A `worker` plugin must be a subclass of the ``WorkerPlugin`` class.

 As with any plugin, a :ref:`configuration file <pluginconfig>` must also exist
 and be properly configured.

 Example

 ::

 from typing import Dict, List, Optional

 from stoq.plugins import WorkerPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import (
 Payload,
 Request,
 WorkerResponse,
)

 class ExampleWorker(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.useful = config.getboolean('options', 'useful', fallback=False)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 response = {'worker_results': f'useful: {self.useful}'}
 return WorkerResponse(response)

 Required Workers

 `required_workers` is a configuration option specific to `WorkerPlugin` class.
 The purpose of this option is to allow a user to define worker dependencies. For
 example, WorkerA must be run after WorkerB because WorkerA requires the results
 from WorkerB to run successfully. This configuration option may be set in the
 `.stoq` configuration file for the `WorkerPlugin`, or within the `__init__`
 function.

 ::

 from typing import List, Optional

 from stoq.plugins import WorkerPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import (
 Payload,
 Request,
 WorkerResponse,
)
 class WorkerA(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.required_workers = config.getset(
 'options', 'required_workers', fallback=set('WorkerB')
)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 is_bad: bool = payload.results.workers['WorkerB']['is_bad']
 response = {'worker_results': f'is_bad: {is_bad}'}
 return WorkerResponse(response)

 Extracted Payloads

 Worker plugins may also extract payloads, and return them to ``Stoq`` for
 further analysis. Each extracted payload that is returned will be inserted
 into the same workflow as the original payload.

 ::

 from typing import Dict, List, Optional

 from stoq.plugins import WorkerPlugin
 from stoq.helpers import StoqConfigParser
 from stoq.data_classes import (
 ExtractedPayload,
 Payload,
 PayloadMeta,
 RequestMeta,
 WorkerResponse,
)

 class ExampleWorker(WorkerPlugin):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.useful = config.getboolean('options', 'useful', fallback=False)

 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 extracted_payloads: List = []
 extracted_payloads.append(ExtractedPayload(b'Lorem ipsum'))
 response = {'worker_results': f'useful: {self.useful}'}
 return WorkerResponse(response, extracted=extracted_payloads)

 Dispatch To

 In some cases it may be useful for a worker plugin to dicate which plugins an extracted
 payload is scanned with.

 ::

 >>> meta = PayloadMeta(dispatch_to=['yara'])
 >>> extracted_payload = ExtractedPayload(b'this is a payload with bad stuff', meta)

 Should Scan

 Likewise, there may be cases where an extracted payload should not be scanned by workers,
 but should be added to the results or archived. Simply set `PayloadMeta.should_scan` to
 `False`.

 ::

 >>> meta = PayloadMeta(should_scan=False)
 >>> extracted_payload = ExtractedPayload(b'this is a payload', meta)

 API
 ===

"""
from typing import Dict, Optional
from abc import abstractmethod, ABC
from configparser import ConfigParser

from stoq.plugins import BasePlugin
from stoq.helpers import StoqConfigParser
from stoq.data_classes import Payload, Request, WorkerResponse

[docs]class WorkerPlugin(BasePlugin, ABC):
 def __init__(self, config: StoqConfigParser) -> None:
 super().__init__(config)
 self.required_workers = config.getset(
 'options', 'required_workers', fallback=set()
)

[docs] @abstractmethod
 async def scan(
 self, payload: Payload, request: Request
) -> Optional[WorkerResponse]:
 pass

 _images/reconstruct-results.png
teration #1

azip Iteration #2 Iteration #4
li‘l ’——» bzip czip Heration #5
e e A
» » 1t 2t 24

nav.xhtml

 Table of Contents

 		
 stoQ: automation. simplified.

 		
 Installation

 		
 Minimum requirements

 		
 Initial Setup

 		
 Stable

 		
 Development

 		
 Installing Plugins

 		
 From GitHub

 		
 From directory

 		
 Upgrading plugins

 		
 Getting Started

 		
 Configuring stoQ

 		
 stoq.cfg

 		
 $STOQ_HOME

 		
 Running stoQ

 		
 List Plugins

 		
 Scan Mode

 		
 Run Mode

 		
 Plugin configuration

 		
 RequestMeta Options

 		
 Development

 		
 Core

 		
 Overview

 		
 Framework

 		
 Manual Interaction

 		
 Multiple Plugin directories

 		
 API

 		
 Exceptions

 		
 Plugins

 		
 Overview

 		
 Configuration

 		
 Multiclass Plugins

 		
 Plugin Logging

 		
 Errors

 		
 Classes

 		
 Upgrading Plugins

 		
 v2 to v3

 		
 Packaging Plugins

 		
 setup.py

 		
 MANIFEST.in

 		
 requirements.txt

 		
 plugin subdirectory

 		
 Examples

 		
 Frequently Asked Questions

 		
 Community Guide

 		
 Contributing

 		
 Welcome

 		
 How to Contribute

 		
 Ground Rules

 		
 How to report a bug

 		
 Suggest Features or Enhancements

 		
 Code review process

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_static/file.png

_static/minus.png

_static/reconstruct-results.png
teration #1

azip Iteration #2 Iteration #4
li‘l ’——» bzip czip Heration #5
e e A
» » 1t 2t 24

_static/stoq.png
2

_static/plus.png

